A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network

2022 ◽  
Vol 73 ◽  
pp. 103467
Author(s):  
Xiangyu Deng ◽  
Jinhong Ye
Author(s):  
Mali Mohammedhasan ◽  
Harun Uğuz

This paper proposes an incoming Deep Convolutional Neural Network (CNN) architecture for segmenting retinal blood vessels automatically from fundus images. Automatic segmentation performs a substantial role in computer-aided diagnosis of retinal diseases; it is of considerable significance as eye diseases as well as some other systemic diseases give rise to perceivable pathologic changes. Retinal blood vessel segmentation is challenging because of the excessive changes in the morphology of the vessels on a noisy background. Previous deep learning-based supervised methods suffer from the insufficient use of low-level features which is advantageous in semantic segmentation tasks. The proposed architecture makes use of both high-level features and low-level features to segment retinal blood vessels. The major contribution of the proposed architecture concentrates on two important factors; the first in its supplying of extremely modularized network architecture of aggregated residual connections which enable us to copy the learned layers from the shallower model and developing additional layers to identity mapping. The second is to improve the utilization of computing resources within the network. This is achieved through a skillfully crafted design that allows for increased depth and width of the network while maintaining the stability of its computational budget. Experimental results show the effectiveness of using aggregated residual connections in segmenting retinal vessels more accurately and clearly. Compared to the best existing methods, the proposed method outperformed other existing methods in different measures, comprised less false positives at fine vessels, and caressed more clear lines with sufficient details like the human annotator.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 946 ◽  
Author(s):  
Pearl Mary Samuel ◽  
Thanikaiselvan Veeramalai

Retinal blood vessel segmentation influences a lot of blood vessel-related disorders such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular disorders, etc. It is found that vessel segmentation using a convolutional neural network (CNN) showed increased accuracy in feature extraction and vessel segmentation compared to the classical segmentation algorithms. CNN does not need any artificial handcrafted features to train the network. In the proposed deep neural network (DNN), a better pre-processing technique and multilevel/multiscale deep supervision (DS) layers are being incorporated for proper segmentation of retinal blood vessels. From the first four layers of the VGG-16 model, multilevel/multiscale deep supervision layers are formed by convolving vessel-specific Gaussian convolutions with two different scale initializations. These layers output the activation maps that are capable to learn vessel-specific features at multiple scales, levels, and depth. Furthermore, the receptive field of these maps is increased to obtain the symmetric feature maps that provide the refined blood vessel probability map. This map is completely free from the optic disc, boundaries, and non-vessel background. The segmented results are tested on Digital Retinal Images for Vessel Extraction (DRIVE), STructured Analysis of the Retina (STARE), High-Resolution Fundus (HRF), and real-world retinal datasets to evaluate its performance. This proposed model achieves better sensitivity values of 0.8282, 0.8979 and 0.8655 in DRIVE, STARE and HRF datasets with acceptable specificity and accuracy performance metrics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuliang Ma ◽  
Xue Li ◽  
Xiaopeng Duan ◽  
Yun Peng ◽  
Yingchun Zhang

Purpose. Retinal blood vessel image segmentation is an important step in ophthalmological analysis. However, it is difficult to segment small vessels accurately because of low contrast and complex feature information of blood vessels. The objective of this study is to develop an improved retinal blood vessel segmentation structure (WA-Net) to overcome these challenges. Methods. This paper mainly focuses on the width of deep learning. The channels of the ResNet block were broadened to propagate more low-level features, and the identity mapping pathway was slimmed to maintain parameter complexity. A residual atrous spatial pyramid module was used to capture the retinal vessels at various scales. We applied weight normalization to eliminate the impacts of the mini-batch and improve segmentation accuracy. The experiments were performed on the DRIVE and STARE datasets. To show the generalizability of WA-Net, we performed cross-training between datasets. Results. The global accuracy and specificity within datasets were 95.66% and 96.45% and 98.13% and 98.71%, respectively. The accuracy and area under the curve of the interdataset diverged only by 1%∼2% compared with the performance of the corresponding intradataset. Conclusion. All the results show that WA-Net extracts more detailed blood vessels and shows superior performance on retinal blood vessel segmentation tasks.


Sign in / Sign up

Export Citation Format

Share Document