Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area

2022 ◽  
Vol 276 ◽  
pp. 108398
Author(s):  
Yi Chen ◽  
Fulu Tao
2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


2019 ◽  
Vol 11 (14) ◽  
pp. 1684 ◽  
Author(s):  
Chao Zhang ◽  
Jiangui Liu ◽  
Taifeng Dong ◽  
Elizabeth Pattey ◽  
Jiali Shang ◽  
...  

Accurate information of crop growth conditions and water status can improve irrigation management. The objective of this study was to evaluate the performance of SAFYE (simple algorithm for yield and evapotranspiration estimation) crop model for simulating winter wheat growth and estimating water demand by assimilating leaf are index (LAI) derived from canopy reflectance measurements. A refined water stress function was used to account for high crop water stress. An experiment with nine irrigation scenarios corresponding to different levels of water supply was conducted over two consecutive winter wheat growing seasons (2013–2014 and 2014–2015). The calibration of four model parameters was based on the global optimization algorithms SCE-UA. Results showed that the estimated and retrieved LAI were in good agreement in most cases, with a minimum and maximum RMSE of 0.173 and 0.736, respectively. Good performance for accumulated biomass estimation was achieved under a moderate water stress condition while an underestimation occurred under a severe water stress condition. Grain yields were also well estimated for both years (R2 = 0.83; RMSE = 0.48 t∙ha−1; MRE = 8.4%). The dynamics of simulated soil moisture in the top 20 cm layer was consistent with field observations for all scenarios; whereas, a general underestimation was observed for total water storage in the 1 m layer, leading to an overestimation of the actual evapotranspiration. This research provides a scheme for estimating crop growth properties, grain yield and actual evapotranspiration by coupling crop model with remote sensing data.


2012 ◽  
Author(s):  
Jianmao Guo ◽  
Tengfei Zheng ◽  
Qi Wang ◽  
Jia Yang ◽  
Junyi Shi ◽  
...  

2014 ◽  
Author(s):  
Jianmao Guo ◽  
Yanghua Gao ◽  
Junwei Liu ◽  
Dunyue Fei ◽  
Qian Wang

2017 ◽  
Vol 10 (3-4) ◽  
pp. 9-15 ◽  
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács ◽  
György Sipos

Abstract Inland excess water (IEW) is a type of flood where large flat inland areas are covered with water during a period of several weeks to months. The monitoring of these floods is needed to understand the extent and direction of development of the inundations and to mitigate their damage to the agricultural sector and build up infrastructure. Since IEW affects large areas, remote sensing data and methods are promising technologies to map these floods. This study presents the first results of a system that can monitor inland excess water over a large area with sufficient detail at a high interval and in a timely matter. The methodology is developed in such a way that only freely available satellite imagery is required and a map with known water bodies is needed to train the method to identify inundations. Minimal human interference is needed to generate the IEW maps. We will present a method describing three parallel workflows, each generating separate maps. The maps are combined to one weekly IEW map. At this moment, the method is capable of generating IEW maps for a region of over 8000 km2, but it will be extended to cover the whole Great Hungarian Plain, and in the future, it can be extended to any area where a training water map can be created.


Sign in / Sign up

Export Citation Format

Share Document