scholarly journals Improving sterile processing practices in Cambodian healthcare facilities

2020 ◽  
Vol 2 (4) ◽  
pp. 100101
Author(s):  
Olive Fast ◽  
Aliyah Dosani ◽  
Faith-Michael Uzoka ◽  
Alexander Cuncannon ◽  
Samphy Cheav
2021 ◽  
Vol 1 (S1) ◽  
pp. s61-s62
Author(s):  
Amy Kressel ◽  
Katie Swafford ◽  
DJ Shannon ◽  
Rachel Cathey ◽  
Jamie R. Fryar ◽  
...  

Background: US healthcare facilities experienced significant personal protective equipment (PPE) shortages, including N95 masks, in the spring and summer of 2020. The Centers for Disease Control and Prevention issued guidance for extended use, reprocessing, and reuse of N95s. Eskenazi Health (EH) implemented a program to reprocess N95s and other PPE on-site using low-heat decontamination (LHD). EH considered large-scale and small-scale ultraviolet (UV), hydrogen peroxide vapor, and LHD for on-site reprocessing of N95s. All of these methods allowed up to 3 reprocessing cycles according to most literature available at the time. However, each method differed in feasibility and acceptability to staff. EH chose to implement LHD based on both considerations. Methods: Numerous small-group meetings were held in April 2020 to determine the feasibility and acceptability of N95 reprocessing methods. Staff wanted a method that was easy for the end user, had quick turnaround, and allowed them to retrieve their own N95s. They favored a method that could be used for all PPE. EH had deployed numerous small UV machines that individuals could use for N95s. The UV machines could not be scaled up easily. To scale up, a multidisciplinary team comprising infection prevention, biomedical engineering, and sterile processing representatives reviewed available methods and implemented LHD. Biomedical engineers determined that existing blanket warmers could be reprogrammed and repurposed for low-heat decontamination. Food warmers were also available but were not needed. Biomedical engineers reprogrammed the blanket warmers to 70°C and developed a wicking system using a towel and water tray to maintain humidity; decontamination took 30 minutes. Testing runs determined that both N95s and eye protection tolerated LHD without apparent damage. Infection prevention staff developed a workflow in which staff deposited all PPE in a paper bag; the PPE bag was centrally reprocessed, marked (Figure 1), and returned to designated locations (Figure 2) for staff to retrieve their original PPE. Sterile processing staff facilitated the reprocessing workflow, and elective surgeries were canceled during the COVID-19 surge. Results: From April 20, 2020, to July 19, 2020, 7,512 units were decontaminated with LHD. If each N95 was sterilized thrice (4 uses per N95), then LHD reduced the need to purchase 22,536 N95s. Restarting elective surgeries decreased staff and support from sterile processing; the space was needed for other purposes; and N95 availability increased. All of these factors led to the discontinuation of LHD. Conclusions: LHD enables reprocessing of N95s and other PPE using existing assets. LHD is advantageous because of scalability and the capacity to provide staff with their own reprocessed PPE.Funding: NoDisclosures: None


2020 ◽  
Vol 54 (6) ◽  
pp. 410-416
Author(s):  
Joyce M. Hansen ◽  
Scott Weiss ◽  
Terra A. Kremer ◽  
Myrelis Aguilar ◽  
Gerald McDonnell

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged healthcare providers in maintaining the supply of critical personal protective equipment, including single-use respirators and surgical masks. Single-use respirators and surgical masks can reduce risks from the inhalation of airborne particles and microbial contamination. The recent high-volume demand for single-use respirators and surgical masks has resulted in many healthcare facilities considering processing to address critical shortages. The dry heat process of 80°C (176°F) for two hours (120 min) has been confirmed to be an appropriate method for single-use respirator and surgical mask processing.


Author(s):  
Majid Baserisalehi ◽  
Samira Zarezadeh ◽  
Majid Baserisalehi ◽  
Saeed Shoa

Stenotrophomonas maltophilia is an emerging pathogenic non-fermentative Gram-negative Bacillus species. It has caused many nosocomial infections and can be isolated from various hospital wards and healthcare facilities. Research has shown that most of its strains are inherently resistant to many antibiotics and have multidrug resistance. This research intended to determine its occurrence frequency at some Hospitals in shiraz, Iran. The present study was conducted in six months (from early spring to late summer 2019). Clinical samples (Blood, Urine and cerebrospinal fluid (CSF)) collected from 120 patients afflicted with various infections. The samples were transferred to the Laboratory and subjected to microbiological analysis. Identification of the isolates was carried out by phenotypic methods and Stenotrophomonas maltophilia isolates verified using molecular methods. In total, various bacteria were isolated from 84 clinical samples. The isolates were Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Stenotrophomonas maltophilia, Staphylococcus aureus and Pseudomonas aeruginosa. Stenotrophomonas maltophilia was isolated from 17 (20.2%) positive samples and most of them were isolated from blood samples. Our finding indicated that Stenotrophomonas maltophilia isolated more from blood samples follow by CSF sample. In addition, our finding illustrated that Stenotrophomonas maltophilia can be considered as the common nosocomial agent at hospitals in Shiraz, Iran.


Sign in / Sign up

Export Citation Format

Share Document