EFFECTIVENESS OF ARTIFICIAL INTELLIGENCE USING DEEP LEARNING FOR DETECTING GASTRIC CANCER IN ENDOSCOPIC IMAGES

2018 ◽  
Author(s):  
T Hirasawa ◽  
K Aoyama ◽  
J Fujisaki ◽  
T Tada
Endoscopy ◽  
2020 ◽  
Author(s):  
Alanna Ebigbo ◽  
Robert Mendel ◽  
Tobias Rückert ◽  
Laurin Schuster ◽  
Andreas Probst ◽  
...  

Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.


2018 ◽  
Vol 21 (4) ◽  
pp. 653-660 ◽  
Author(s):  
Toshiaki Hirasawa ◽  
Kazuharu Aoyama ◽  
Tetsuya Tanimoto ◽  
Soichiro Ishihara ◽  
Satoki Shichijo ◽  
...  

2020 ◽  
Author(s):  
Chang Seok Bang ◽  
Hyun Lim ◽  
Hae Min Jeong ◽  
Sung Hyeon Hwang

BACKGROUND Authors previously examined deep-learning models to classify the invasion depth (mucosa-confined vs. submucosa-invaded) of gastric neoplasms using endoscopic images. The external-test accuracy reach 77.3%. However, model establishment is labor-intense, requiring high performance. Automated deep-learning (AutoDL), which enable fast searching of optimal neural architectures and hyperparameters without complex coding, have been developed. OBJECTIVE To establish AutoDL models in classifying the invasion depth of gastric neoplasms. Additionally, endoscopist-artificial intelligence interactions were explored. METHODS The same 2,899 endoscopic images, which were employed to establish the previous model, were used. A prospective multicenter validation using 206 and 1597 novel images was conducted. The primary outcome was external-test accuracy. “Neuro-T,” “Create ML-Image Classifier,” and “AutoML-Vision” were used in establishing the models. Three doctors with different levels of endoscopy expertise were analyzed for each image without AutoDL’s support, with faulty AutoDL’s support, and with best performance AutoDL’s support in sequence. RESULTS Neuro-T-based model reached 89.3% (95% confidence interval: 85.1–93.5%) external-test accuracy. For the model establishment time, Create ML-Image Classifier showed the fastest time of 13 minutes while reaching 82% external-test accuracy. Expert endoscopist decisions were not influenced by AutoDL. The faulty AutoDL has misled the endoscopy trainee and the general physician. However, this was corrected by the support of the best performance AutoDL. The trainee gained the highest benefit from the AutoDL’s support. CONCLUSIONS AutoDL is deemed useful for the on-site establishment of customized deep-learning models. An inexperienced endoscopist with at least a certain level of expertise can benefit from AutoDL support.


2020 ◽  
Author(s):  
IF Cherciu Harbiyeli ◽  
IM Cazacu ◽  
ET Ivan ◽  
MS Serbanescu ◽  
B Hurezeanu ◽  
...  

2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document