scholarly journals The Biomechanics of Multi-articular Muscle–Tendon Systems in Snakes

2020 ◽  
Vol 60 (1) ◽  
pp. 140-155 ◽  
Author(s):  
Henry C Astley

Synopsis The geometry of the musculoskeletal system, such as moment arms and linkages, determines the link between muscular functions and external mechanical results, but as the geometry becomes more complex, this link becomes less clear. The musculoskeletal system of snakes is extremely complex, with several muscles that span dozens of vertebrae, ranging from 10 to 45 vertebrae in the snake semispinalis-spinalis muscle (a dorsiflexor). Furthermore, this span correlates with habitat in Caenophidians, with burrowing and aquatic species showing shorter spans while arboreal species show longer spans. Similar multi-articular spans are present in the prehensile tails of primates, the necks of birds, and our own digits. However, no previous analysis has adequately explained the mechanical consequences of these multi-articular spans. This paper uses techniques from the analysis of static systems in engineering to analyze the consequences of multiarticular muscle configurations in cantilevered gap bridging and compares these outcomes to a hypothetical mono-articular system. Multi-articular muscle spans dramatically reduce the forces needed in each muscle, but the consequent partitioning of muscle cross-sectional area between numerous muscles results in a small net performance loss. However, when a substantial fraction of this span is tendinous, performance increases dramatically. Similarly, metabolic cost is increased for purely muscular multi-articular spans, but decreases rapidly with increasing tendon ratio. However, highly tendinous spans require increased muscle strain to achieve the same motion, while purely muscular systems are unaffected. These results correspond well with comparative data from snakes and offer the potential to dramatically improve the mechanics of biomimetic snake robots.

2006 ◽  
Vol 18 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Louise E. Wood ◽  
Sharon Dixon ◽  
Chris Grant ◽  
Neil Armstrong

The aim of this study was to examine elbow flexion torque, muscle cross-sectional area (CSA), and leverage in boys and girls. Thirty-eight prepubertal children (9.6 ± 0.3 years) volunteered to participate. All performed isometric flexion actions at 10°, 50°, and 90° of elbow flexion. Magnetic resonance imaging was used to assess elbow flexor (EF) muscle CSA and brachialis moment arm lengths. No significant gender differences were observed for any of the variables studied. EF CSA was directly proportional to isometric torque at 50° and 90°. CSA explained between 47% and 57% of torque variance. Moment arm estimates explained 19% of the variance in isometric torque at 90°. These baseline data contribute to our understanding of factors influencing strength variation during childhood.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chong Liu ◽  
Jiang Xue ◽  
Jingjing Liu ◽  
Gang Ma ◽  
Abu Moro ◽  
...  

Abstract Background The purpose of the study is to investigate the correlation between upper lumbar disc herniation (ULDH) and multifidus muscle degeneration via the comparison of width, the cross-sectional area and degree of fatty infiltration of the lumbar multifidus muscle. Methods Using the axial T2-weighted images of magnetic resonance imaging as an assessment tool, we retrospectively investigated 132 patients with ULDH and 132 healthy individuals. The total muscle cross-sectional area (TMCSA) and the pure muscle cross-sectional area (PMCSA) of the multifidus muscle at the L1/2, L2/3, and L3/4 intervertebral disc levels were measured respectively, and in the meantime, the average multifidus muscle width (AMMW) and degree of fatty infiltration of bilateral multifidus muscle were evaluated. The resulting data were analyzed to determine the presence/absence of statistical significance between the study and control groups. Multivariate logistical regression analyses were used to evaluate the correlation between ULDH and multifidus degeneration. Results The results of the analysis of the two groups showed that there were statistically significant differences (p < 0.05) between TMCSA, PMCSA, AMMW and degree of fatty infiltration. The multivariate logistic regression analysis indicated that the TMCSA, PMCSA, AMMW and the degree of fatty infiltration of multifidus muscle were correlated with ULDH, and the differences were statistically significant (P < 0.05). Conclusions A correlation could exist between multifidus muscles degeneration and ULDH, that may be a process of mutual influence and interaction. Lumbar muscle strengthening training could prevent and improve muscle atrophy and degeneration.


2015 ◽  
Vol 116 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Felipe Damas ◽  
Stuart M. Phillips ◽  
Manoel E. Lixandrão ◽  
Felipe C. Vechin ◽  
Cleiton A. Libardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document