scholarly journals Projected changes of alpine grassland carbon dynamics in response to climate change and elevated CO2concentrations under Representative Concentration Pathways (RCP) scenarios

2019 ◽  
Author(s):  
Pengfei Han ◽  
Xiaohui Lin ◽  
Wen Zhang ◽  
Guocheng Wang

AbstractThe Tibetan Plateau is an important component of the global carbon cycle due to the large permafrost carbon pool and its vulnerability to climate warming. The Tibetan Plateau has experienced a noticeable warming over the past few decades and is projected to continue warming in the future. However, the direction and magnitude of carbon fluxes responses to climate change and elevated CO2concentration under Representative Concentration Pathways (RCP) scenarios in the Tibetan Plateau grassland are poorly known. Here, we used a calibrated and validated biogeochemistry model, CENTURY, to quantify the contributions of climate change and elevated CO2on the future carbon budget in the alpine grassland under three RCP scenarios. Though the Tibetan Plateau grassland was projected a net carbon sink of 16 ~ 25 Tg C yr-1in the 21st century, the capacity of carbon sequestration was predicted to decrease gradually because climate-driven increases in heterotrophic respiration (Rh) (with linear slopes 0.49 ~ 1.62 g C m-2yr-1) was greater than the net primary production (NPP) (0.35 ~ 1.52 g C m-2yr-1). However, the elevated CO2contributed more to plant growth (1.9% ~ 7.3%) than decomposition (1.7% ~ 6.1%), which could offset the warming-induced carbon loss. The interannual and decadal-scale dynamics of the carbon fluxes in the alpine grassland were primarily controlled by temperature, while the role of precipitation became increasingly important in modulating carbon cycle. The strengthened correlation between precipitation and carbon budget suggested that further research should consider the performance of precipitation in evaluating carbon dynamics in a warmer climate scenario.

2021 ◽  
Author(s):  
Zhe Jin ◽  
Xiangjun Tian ◽  
Rui Han ◽  
Yu Fu ◽  
Xin Li ◽  
...  

Abstract. Accurate assessment of the various sources and sinks of carbon dioxide (CO2), especially terrestrial ecosystem and ocean fluxes with high uncertainties, is important for understanding of the global carbon cycle, supporting the formulation of climate policies, and projecting future climate change. Satellite retrievals of the column-averaged dry air mole fractions of CO2 (XCO2) are being widely used to improve carbon flux estimation due to their broad spatial coverage. However, there is no consensus on the robust estimates of regional fluxes. In this study, we present a global and regional resolved terrestrial ecosystem carbon flux (NEE) and ocean carbon flux dataset for 2015–2019. The dataset was generated using the Tan-Tracker inversion system by assimilating Observing Carbon Observatory 2 (OCO-2) column CO2 retrievals. The posterior NEE and ocean carbon fluxes were comprehensively validated by comparing posterior simulated CO2 concentrations with OCO-2 independent retrievals and Total Carbon Column Observing Network (TCCON) measurements. The validation showed that posterior carbon fluxes significantly improved the modelling of atmospheric CO2 concentrations, with global mean biases of 0.33 ppm against OCO-2 retrievals and 0.12 ppm against TCCON measurements. We described the characteristics of the dataset at global, regional, and Tibetan Plateau scales in terms of the carbon budget, annual and seasonal variations, and spatial distribution. The posterior 5-year annual mean global atmospheric CO2 growth rate was 5.35 PgC yr−1, which was within the uncertainty of the Global Carbon Budget 2020 estimate (5.49 PgC yr−1). The posterior annual mean NEE and ocean carbon fluxes were −4.07 and −3.33 PgC yr−1, respectively. Regional fluxes were analysed based on TransCom partitioning. All 11 land regions acted as carbon sinks, except for Tropical South America, which was almost neutral. The strongest carbon sinks were located in Boreal Asia, followed by Temperate Asia and North Africa. The entire Tibetan Plateau ecosystem was estimated as a carbon sink, taking up −49.52 TgC yr−1 on average, with the strongest sink occurring in eastern alpine meadows. These results indicate that our dataset captures surface carbon fluxes well and provides insight into the global carbon cycle. The dataset can be accessed at https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021).


2021 ◽  
Vol 311 ◽  
pp. 108694
Author(s):  
Yuyang Wang ◽  
Jingfeng Xiao ◽  
Yaoming Ma ◽  
Yiqi Luo ◽  
Zeyong Hu ◽  
...  

2017 ◽  
Vol 63 (10) ◽  
pp. 811-821 ◽  
Author(s):  
Conghai Han ◽  
Zongli Wang ◽  
Guicai Si ◽  
Tianzhu Lei ◽  
Yanli Yuan ◽  
...  

Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0–10 cm) was more sensitive to precipitation than that in subsurface layers (10–40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5–10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.


2013 ◽  
Vol 70 (4) ◽  
pp. 1278-1290 ◽  
Author(s):  
Zhenming Ji ◽  
Shichang Kang

Abstract A high-resolution regional climate model is used to simulate climate change over the Tibetan Plateau (TP). The model is driven at the grid spacing of 10 km by nesting the outputs of 50-km-resolution simulations. The results show that the models can capture the spatial and temporal distributions of the surface air temperature over the TP. The so-called double-nested method has a higher horizontal resolution and represents more spatial details. For example, the temperature simulations from the double-nested method reflect the observations better compared to the 50-km-resolution models. This is mainly due to the fact that topographical effects of complex terrains are detected better at higher resolution. Although both models can represent the basic patterns of precipitation, the simulated results are not as good as those of temperature. In the future, significant warming seems to develop over the TP under two representative concentration pathway (RCP) scenarios. Greater increases occur in December–February (DJF) compared with June–August (JJA). The increasing temperature trend is more pronounced over the Gangdese Mountains and over the Himalayas than in the central TP. The projection of precipitation shows the main increases in DJF. In JJA, it predicts decreases or slight changes in the southern TP. The comparison between RCP8.5 and RCP4.5 scenarios shows a similar spatial distributions of temperature and precipitation, whereas the respective values of RCP8.5 are enhanced compared with those under RCP4.5.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2021 ◽  
Vol 41 (6) ◽  
pp. 3725-3742
Author(s):  
Jie Peng ◽  
Chaoyang Wu ◽  
Xiaoyue Wang ◽  
Linlin Lu

Sign in / Sign up

Export Citation Format

Share Document