Nitrous oxide production in two forested watersheds exhibiting symptoms of nitrogen saturation

1998 ◽  
Vol 28 (11) ◽  
pp. 1723-1732 ◽  
Author(s):  
William T Peterjohn ◽  
Richard J McGervey ◽  
Alan J Sexstone ◽  
Martin J Christ ◽  
Cassie J Foster ◽  
...  

A major concern about N saturation is that it may increase the production of a strong greenhouse gas, nitrous oxide (N2O). We measured N2O production in two forested watersheds, a young, fertilized forest (WS 3) and an older, unfertilized forest (WS 4), to (i) assess the importance of N2O production in forests showing symptoms of N saturation; (ii) estimate the contribution of chemoautrophic nitrification to total N2O production; and (iii) examine the relative importance of factors that may control N2O production. During the study period, mean monthly rates of N2O production (3.41-11.42 µ N ·m-2·h-1) were consistent with measurements from other well-drained forest soils but were much lower than measurements from N-rich sites with poorly drained soils. Chemoautotrophic nitrification was important in both watersheds, accounting for 60% (WS 3) and 40% (WS 4) of total N2O production. In WS 3, N2O production was enhanced by additions of CaCO3 and may be constrained by low soil pH. In WS 4, N2O production on south-facing slopes was exceptionally low, constrained by low NO3 availability, and associated with a distinct assemblage of woody vegetation. From this observation, we hypothesize that differences in vegetation can influence N cycling rates and susceptibility to N saturation.

2012 ◽  
Vol 15 (7) ◽  
pp. 1943-1955 ◽  
Author(s):  
Ines M. Heisterkamp ◽  
Andreas Schramm ◽  
Lone H. Larsen ◽  
Nanna B. Svenningsen ◽  
Gaute Lavik ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 7 (6) ◽  
pp. eabb7118
Author(s):  
E. Harris ◽  
E. Diaz-Pines ◽  
E. Stoll ◽  
M. Schloter ◽  
S. Schulz ◽  
...  

Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.


2017 ◽  
Vol 123 ◽  
pp. 429-438 ◽  
Author(s):  
Qingxian Su ◽  
Chun Ma ◽  
Carlos Domingo-Félez ◽  
Anne Sofie Kiil ◽  
Bo Thamdrup ◽  
...  

2017 ◽  
Vol 3 (8) ◽  
pp. e1603229 ◽  
Author(s):  
Yanling Zheng ◽  
Lijun Hou ◽  
Min Liu ◽  
Silvia E. Newell ◽  
Guoyu Yin ◽  
...  

2017 ◽  
Vol 31 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Wu Haohao ◽  
Xu Xingkai ◽  
Duan Cuntao ◽  
Li TuanSheng ◽  
Cheng Weiguo

AbstractPacked soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m−2) and nitrogen (NH4Cl and KNO3, 4.5 g N m−2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3−-N consumption. Without N addition, the glucose-induced cumulative CO2fluxes ranged from 9.61 to 13.49 g CO2-C m−2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.


1984 ◽  
Vol 29 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Sybil P. Seitzinger ◽  
Scott W. Nixon ◽  
Michael E. Q. Pilson

Sign in / Sign up

Export Citation Format

Share Document