An Efficient Handwritten Digit Recognition based on Convolutional Neural Networks with Orthogonal Learning Strategies

Author(s):  
T. Senthil ◽  
C. Rajan ◽  
J. Deepika

The predictions of characters/text/digits from the handwritten images have made the research community spotlight towards recognition. There are enormous applications and ambiguity that made prediction possible with Deep Learning (DL) approaches. Primarily, there are four necessary steps to be carried out with handwriting prediction. First, consideration of a dataset that is more appropriate for DL validation an inefficient manner. Here, Special Database 1 and Special Database 2 are used, which are combined and modified by the National Institute of Standards and Technology (NIST). Next is pre-processing of input handwritten digit recognition data by data normalization, extraction of efficient features which provides better prediction accuracy. The proposed idea uses pixel values as features with the analysis of hyper-parameters to enhance near-human performance. With SVM, non-linear and linear models are built to extract the appropriate features for further processing. The features are separate and placed over the Bag of Features (BoF), which is used by the next processing stage. Finally, a novel Convolutional Neural Network (CNN) is by built modifying the network structure with Orthogonal Learning Particle Swarm Optimization (CNN-OLPSO). This modification is adopted for evolutionarily optimizing the number of hyper-parameters. This proposed optimizer predicts the optimal values from the fitness computation and shows better efficiency when compared to various other conventional approaches. The novelty which relies on CNN adoption is to endeavor a suitable path towards digitalization and preserve the handwritten structure and help automatic feature extraction using CNN by offering better computation accuracy. The optimization approach helps to avoid over-fitting and under-fitting issues. Here, metrics like accuracy, elapsed time, recall, precision, and [Formula: see text]-measure are evaluated. The results of CNN-OLPSO give better accuracy, reduced error rate and better execution time (s) compared to other existing methods. Thus, the proposed model shows better tradeoff in the recognition rate of handwritten digits.

2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Author(s):  
Bhagyashree P M ◽  
L K Likhitha ◽  
D S Rajesh

Traditional systems of handwritten Digit Recognition have depended on handcrafted functions and a massive amount of previous knowledge. Training an Optical character recognition (OCR) system primarily based totally on those stipulations is a hard task. Research in the handwriting recognition subject is centered on deep learning strategies and has accomplished breakthrough overall performance in the previous couple of years. Convolutional neural networks (CNNs) are very powerful in perceiving the structure of handwritten digits in ways that assist in automated extraction of features and make CNN the most appropriate technique for solving handwriting recognition problems. Here, our goal is to attain similar accuracy through the use of a pure CNN structure.CNN structure is proposed to be able to attain accuracy even higher than that of ensemble architectures, alongside decreased operational complexity and price. The proposed method gives 99.87 accuracy for real-world handwritten digit prediction with less than 0.1 % loss on training with 60000 digits while 10000 under validation.


Author(s):  
Shubham Mendapara ◽  
Krish Pabani ◽  
Yash Paneliya

Recently, handwritten digit recognition has become impressively significant with the escalation of the Artificial Neural Networks (ANN). Apart from this, deep learning has brought a major turnaround in machine learning, which was the main reason it attracted many researchers. We can use it in many applications. The main aim of this article is to use the neural network approach for recognizing handwritten digits. The Convolution Neural Network has become the center of all deep learning strategies. Optical character recognition (OCR) is a part of image processing that leads to excerpting text from images. Recognizing handwritten digits is part of OCR. Recognizing the numbers is an important and remarkable subject. In this way, since the handwritten digits are not of same size, thickness, position, various difficulties are faced in determining the problem of recognizing handwritten digits. The unlikeness and structure of the compositional styles of many entities further influences the example and presence of the numbers. This is the strategy for perceiving and organizing the written characters. Its applications are such as programmed bank checks, health, post offices, for education, etc. In this article, to evaluate CNN's performance, we used the MNIST dataset, which contains 60,000 images of handwritten digits. Achieves 98.85% accuracy for handwritten digit. And where 10% of the total images were used to test the data set.


Sign in / Sign up

Export Citation Format

Share Document