scholarly journals How do Depth of Discharge, C-rate and Calendar Age Affect Capacity Retention, Impedance Growth, the Electrodes, and the Electrolyte in Li-Ion Cells?

Author(s):  
Roby Gauthier ◽  
Aidan Luscombe ◽  
Toby Bond ◽  
Michael Bauer ◽  
Michel Johnson ◽  
...  

Abstract Lithium-ion cells testing under different state of charge ranges, C-rates and cycling temperature have different degrees of lithium inventory loss, impedance growth and active mass loss. Here, a large matrix of polycrystalline NMC622/natural graphite Li-ion pouch cells were tested with seven different state of charge ranges (0-25, 0-50, 0-75, 0-100, 75-100, 50-100 and 25-100%), three different C-rates and at two temperatures. First, capacity fade was compared to a model developed by Deshpande and Bernardi. Second, after 2.5 years of cycling, detailed analysis by dV/dQ analysis, lithium-ion differential thermal analysis, volume expansion by Archimedes’ principle, electrode stack growth, ultrasonic transmissivity and x-ray computed tomography were undertaken. These measurements enabled us to develop a complete picture of cell aging for these cells. This then led to an empirical predictive model for cell capacity loss versus SOC range and calendar age. Although these particular cells exhibited substantial positive electrode active mass loss, this did not play a role in capacity retention because the cells were anode limited during full discharge under all the tests carried out here. However, the positive electrode mass loss was strongly coupled to positive electrode swelling and electrolyte “unwetting” that would eventually cause dramatic failure.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2212
Author(s):  
Hien Vu ◽  
Donghwa Shin

Lithium-ion batteries exhibit significant performance degradation such as power/energy capacity loss and life cycle reduction in low-temperature conditions. Hence, the Li-ion battery pack is heated before usage to enhance its performance and lifetime. Recently, many internal heating methods have been proposed to provide fast and efficient pre-heating. However, the proposed methods only consider a combination of unit cells while the internal heating should be implemented for multiple groups within a battery pack. In this study, we investigated the possibility of timing control to simultaneously obtain balanced temperature and state of charge (SOC) between each cell by considering geometrical and thermal characteristics of the battery pack. The proposed method schedules the order and timing of the charge/discharge period for geometrical groups in a battery pack during internal pre-heating. We performed a pack-level simulation with realistic electro-thermal parameters of the unit battery cells by using the mutual pulse heating strategy for multi-layer geometry to acquire the highest heating efficiency. The simulation results for heating from −30 ∘ C to 10 ∘ C indicated that a balanced temperature-SOC status can be achieved via the proposed method. The temperature difference can be decreased to 0.38 ∘ C and 0.19% of the SOC difference in a heating range of 40 ∘ C with only a maximum SOC loss of 2.71% at the end of pre-heating.


Author(s):  
Zhimin Xi ◽  
Rong Jing ◽  
Cheol Lee

This paper investigates recent research on battery diagnostics and prognostics especially for Lithium-ion (Li-ion) batteries. Battery diagnostics focuses on battery models and diagnosis algorithms for battery state of charge (SOC) and state of health (SOH) estimation. Battery prognostics elaborates data-driven prognosis algorithms for predicting the remaining useful life (RUL) of battery SOC and SOH. Readers will learn not only basics but also very recent research developments on battery diagnostics and prognostics.


Batteries ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 69 ◽  
Author(s):  
Khaleel I. Hamad ◽  
Yangchuan Xing

Lithium-rich layered oxide cathode materials of Li1.2Mn0.5100Ni0.2175Co0.0725O2 have been synthesized using metal salts with acetate and nitrate anions as precursors in glycerol solvent. The effects of the precursor metal salts on particle size, morphology, cationic ordering, and ultimately, the electrode performance of the cathode powders have been studied. It was demonstrated that the use of cornstarch as a gelling agent with nitrate-based metal salts results in a reduction of particle size, leading to higher surface area and initial discharge capacity. However, the cornstarch gelling effect was minimized when acetate salts were used. As observed in the Fourier-transform infrared spectroscopy analysis, cornstarch can react with acetates to form acetyl groups during the synthesis, effectively preventing the cornstarch gel from capping the particles, thus leading to larger particles. A tradeoff was found when nitrate and acetate salts were mixed in the synthesis. It was shown that the new cathode powder has the best cationic ordering and capacity retention, promising a much stable Li-rich cathode material for lithium-ion batteries.


Author(s):  
Shankar Mohan ◽  
Youngki Kim ◽  
Anna G. Stefanopoulou

Lithium-ion (Li-ion) batteries undergo physical deformation as their state-of-charge (SOC) changes. The physical deformation causes changes in the pressure (equivalently, force) applied at the end-plates of a constrained battery pack or module. This paper proposes the fusion of bulk force and battery voltage measurements to estimate the SOC in Li-ion battery packs. In this paper, using discrete Linear Quadratic Estimators (dLQEs), the advantage of using force measurements in addition to voltage measurement to improve SOC estimates is quantitatively studied through simulations. It is observed that including force measurements can decrease the mean and standard deviation of SOC estimation error by 50% in some SOC intervals.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Michael A. Roscher ◽  
Oliver Bohlen ◽  
Jens Vetter

The relation between batteries' state of charge (SOC) and open-circuit voltage (OCV) is a specific feature of electrochemical energy storage devices. Especially NiMH batteries are well known to exhibit OCV hysteresis, and also several kinds of lithium-ion batteries show OCV hysteresis, which can be critical for reliable state estimation issues. Electrode potential hysteresis is known to result from thermodynamical entropic effects, mechanical stress, and microscopic distortions within the active electrode materials which perform a two-phase transition during lithium insertion/extraction. Hence, some Li-ion cells including two-phase transition active materials show pronounced hysteresis referring to their open-circuit voltage. This work points out how macroscopic effects, that is, diffusion limitations, superimpose the latte- mentioned microscopic mechanisms and lead to a shrinkage of OCV hysteresis, if cells are loaded with high current rates. To validate the mentioned interaction, Li-ion cells' state of charge is adjusted to 50% with various current rates, beginning from the fully charged and the discharged state, respectively. As a pronounced difference remains between the OCV after charge and discharge adjustment, obviously the hysteresis vanishes as the target SOC is adjusted with very high current rate.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Georgi Kovachev ◽  
Andrea Astner ◽  
Gregor Gstrein ◽  
Luigi Aiello ◽  
Johann Hemmer ◽  
...  

Thermal conductivity (TC) is a parameter, which significantly influences the spatial temperature gradients of lithium ion batteries in operative or abuse conditions. It affects the dissipation of the generated heat by the cell during normal operation or during thermal runaway propagation from one cell to the next after an external short circuit. Hence, the thermal conductivity is a parameter of great importance, which concurs to assess the safety of a Li-ion battery. In this work, an already validated, non-destructive measurement procedure was adopted for the determination of the evolution of the through-plane thermal conductivity of 41 Ah commercially available Li-ion pouch cells (LiNiMnCoO2-LiMn2O4/Graphite) as function of battery lifetime and state of charge (SOC). Results show a negative parabolic behaviour of the thermal conductivity over the battery SOC-range. In addition, an average decrease of TC in thickness direction of around 4% and 23% was measured for cells cycled at 60 °C with and without compression, respectively. It was shown that pretension force during cycling reduces battery degradation and thus minimises the effect of ageing on the thermal parameter deterioration. Nevertheless, this study highlights the need of adjustment of the battery pack cooling system due to the deterioration of thermal conductivity after certain battery lifetime with the aim of reducing the risk of battery overheating after certain product life.


Author(s):  
Gabriel M. Cavalheiro ◽  
Takuto Iriyama ◽  
George J. Nelson ◽  
Shan Huang ◽  
Guangsheng Zhang

Abstract The effects of nonuniform temperature distribution on the degradation of lithium-ion (Li-ion) batteries are investigated in this study. A Li-ion battery stack consisting of five 3 Ah pouch cells connected in parallel was tested for 2215 cycles and compared with a single baseline cell. The behaviors of temperature distribution, degradation, and current distribution of the stack were characterized and discussed. Results supported the hypothesis that nonuniform temperature distribution causes nonuniform and accelerated degradation. All cells in the stack experienced higher temperature rise and degraded faster than the baseline cell. In particular, capacity retention of the middle cell in the stack decreased to 50.7% after 2215 cycles, while the baseline cell capacity retention was still 87.8%. The resistance of cells in the stack experienced nonuniform but similar pattern of variation with cycling. The resistances remained stable in early cycles, then experienced a rapid increase, and then became stable again. The middle cell resistance increased abruptly in the last 20 cycles before failure. Current distribution behaviors of the stack also changed significantly during cycling, which was consistent with cell resistance behaviors. The middle cell experienced much higher C rate than average, suggesting that its accelerated degradation can be attributed to the synergized effects of higher local temperature and higher local current.


2012 ◽  
Vol 465 ◽  
pp. 108-111 ◽  
Author(s):  
Hai Teng Wang ◽  
Da Wei He ◽  
Yong Sheng Wang ◽  
Hong Peng Wu ◽  
Ji Gang Wang

We report the fabrication of a tin nanoparticles coated anode in graphene (SnO2 /graphene) for lithium-ion batteries. As an anode material for Li ion batteries, it has 806mAhg-1 and 683mAhg-1 capacities for the first discharge and charge, respectively, which is more than the theoretical capacity of tin oxide, and has good capacity retention with a capacity of 606mAhg-1 after 30 cycles.


2011 ◽  
Vol 396-398 ◽  
pp. 2330-2333
Author(s):  
Hai Teng Wang ◽  
Da Wei He ◽  
Yong Sheng Wang ◽  
Hong Peng Wu ◽  
Ji Gang Wang

SnO2@C/graphene nanocomposite was prepared via chemical synthesis method. The electrochemical performance of the SnO2@C/graphene nanocomposite as anode material was measured by galvanostatic charge/discharge cycling. As an anode material for Li ion batteries, the SnO2@C/graphene nanocomposite shows 823mAhg-1 and 732mAhg-1 capacities for the first discharge and charge, respectively, which is more than the theoretical capacity of tin oxide, and has good capacity retention with a capacity of 748mAhg-1 after 30 cycles. These results suggest that SnO2@C/graphene nanocomposite would be a promising anode material for lithium ion battery.


Sign in / Sign up

Export Citation Format

Share Document