scholarly journals A Blockchain Prediction Model on Time, Value, and Purchase Based on Markov Chain and Queuing Theory in Stock Trade

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wenjuan Lian ◽  
Qi Fan ◽  
Bin Jia ◽  
Yongquan Liang

With the continuous development of the blockchain, it has brought a subversive impact on the blossom of all fields with its characteristics of decentralization, trust-free, and tampering, especially in the financial field. It is of great significance to research the application of blockchain technology in the financial field. As an important part of the financial market, stock has the crucial influence, and the combination of stock and blockchain is becoming a growing trend. In recent years, many studies have focused on the prediction of the stock value, but they have not fully considered the combination of time, value, and purchase. To solve the above problem, we propose a preemption queuing model for multipriority service objects in the blockchain financial architecture according to different service priority. Meanwhile, a queuing-based resource scheduling model is established by using the Markov chain to find the optimal solution. The method in this paper can greatly improve the efficiency of the system and provide a basis for future scientific research in the healthy and sustainable development of the securities industry.

Author(s):  
Xiaokun Wang ◽  
Dong Ni

To scientifically and reasonably evaluate and pre-warn the congestion degree of subway transfer hub, and effectively know the risk of subway passengers before the congestion time coming. We analyzed the passenger flow characteristics of various service facilities in the hub. The congested area of the subway passenger flow interchange hub is divided into queuing area and distribution area. The queuing area congestion evaluation model selects M/M/C and M/G/C based on queuing theory. The queuing model and the congestion evaluation model of the distribution area select the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. Queue length and waiting time are selected as the evaluation indicators of congestion in the queuing area, and passenger flow, passenger flow density and walking speed are selected as the evaluation indicators of congestion in the distribution area. And then, K-means cluster analysis method is used to analyze the sample data, and based on the selected evaluation indicators and the evaluation model establishes the queuing model of the queuing area and the TOPSIS model of the collection and distribution area. The standard value of the congestion level of various service facilities and the congestion level value of each service facility obtained from the evaluation are used as input to comprehensively evaluate the overall congestion degree of the subway interchange hub. Finally we take the Xi’an Road subway interchange hub in Dalian as empirical research, the data needed for congestion evaluation was obtained through field observations and questionnaires, and the congestion degree of the queue area and the distribution area at different times of the workday was evaluated, and the congestion of each service facility was evaluated. The grade value is used as input, and the TOPSIS method is used to evaluate the degree of congestion in the subway interchange hub, which is consistent with the results of passenger congestion in the questionnaire, which verifies the feasibility of the evaluation model and method.


2013 ◽  
Vol 21 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Ryan Bakker ◽  
Keith T. Poole

In this article, we show how to apply Bayesian methods to noisy ratio scale distances for both the classical similarities problem as well as the unfolding problem. Bayesian methods produce essentially the same point estimates as the classical methods, but are superior in that they provide more accurate measures of uncertainty in the data. Identification is nontrivial for this class of problems because a configuration of points that reproduces the distances is identified only up to a choice of origin, angles of rotation, and sign flips on the dimensions. We prove that fixing the origin and rotation is sufficient to identify a configuration in the sense that the corresponding maxima/minima are inflection points with full-rank Hessians. However, an unavoidable result is multiple posterior distributions that are mirror images of one another. This poses a problem for Markov chain Monte Carlo (MCMC) methods. The approach we take is to find the optimal solution using standard optimizers. The configuration of points from the optimizers is then used to isolate a single Bayesian posterior that can then be easily analyzed with standard MCMC methods.


Author(s):  
Chao Wang ◽  
Weijie Chen ◽  
Yueru Xu ◽  
Zhirui Ye

For bus service quality and line capacity, one critical influencing factor is bus stop capacity. This paper proposes a bus capacity estimation method incorporating diffusion approximation and queuing theory for individual bus stops. A concurrent queuing system between public transportation vehicles and passengers can be used to describe the scenario of a bus stop. For most of the queuing systems, the explicit distributions of basic characteristics (e.g., waiting time, queue length, and busy period) are difficult to obtain. Therefore, the diffusion approximation method was introduced to deal with this theoretical gap in this study. In this method, a continuous diffusion process was applied to estimate the discrete queuing process. The proposed model was validated using relevant data from seven bus stops. As a comparison, two common methods— Highway Capacity Manual (HCM) formula and M/M/S queuing model (i.e., Poisson arrivals, exponential distribution for bus service time, and S number of berths)—were used to estimate the capacity of the bus stop. The mean absolute percentage error (MAPE) of the diffusion approximation method is 7.12%, while the MAPEs of the HCM method and M/M/S queuing model are 16.53% and 10.23%, respectively. Therefore, the proposed model is more accurate and reliable than the others. In addition, the influences of traffic intensity, bus arrival rate, coefficient of variation of bus arrival headway, service time, coefficient of variation of service time, and the number of bus berths on the capacity of bus stops are explored by sensitivity analyses.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Felix Blank

PurposeRefugee camps can be severely struck by pandemics, like potential COVID-19 outbreaks, due to high population densities and often only base-level medical infrastructure. Fast responding medical systems can help to avoid spikes in infections and death rates as they allow the prompt isolation and treatment of patients. At the same time, the normal demand for emergency medical services has to be dealt with as well. The overall goal of this study is the design of an emergency service system that is appropriate for both types of demand.Design/methodology/approachA spatial hypercube queuing model (HQM) is developed that uses queuing-theory methods to determine locations for emergency medical vehicles (also called servers). Therefore, a general optimization approach is applied, and subsequently, virus outbreaks at various locations of the study areas are simulated to analyze and evaluate the solution proposed. The derived performance metrics offer insights into the behavior of the proposed emergency service system during pandemic outbreaks. The Za'atari refugee camp in Jordan is used as a case study.FindingsThe derived locations of the emergency medical system (EMS) can handle all non-virus-related emergency demands. If additional demand due to virus outbreaks is considered, the system becomes largely congested. The HQM shows that the actual congestion is highly dependent on the overall amount of outbreaks and the corresponding case numbers per outbreak. Multiple outbreaks are much harder to handle even if their cumulative average case number is lower than for one singular outbreak. Additional servers can mitigate the described effects and lead to enhanced resilience in the case of virus outbreaks and better values in all considered performance metrics.Research limitations/implicationsSome parameters that were assumed for simplification purposes as well as the overall model should be verified in future studies with the relevant designers of EMSs in refugee camps. Moreover, from a practitioners perspective, the application of the model requires, at least some, training and knowledge in the overall field of optimization and queuing theory.Practical implicationsThe model can be applied to different data sets, e.g. refugee camps or temporary shelters. The optimization model, as well as the subsequent simulation, can be used collectively or independently. It can support decision-makers in the general location decision as well as for the simulation of stress-tests, like virus outbreaks in the camp area.Originality/valueThe study addresses the research gap in an optimization-based design of emergency service systems for refugee camps. The queuing theory-based approach allows the calculation of precise (expected) performance metrics for both the optimization process and the subsequent analysis of the system. Applied to pandemic outbreaks, it allows for the simulation of the behavior of the system during stress-tests and adds a further tool for designing resilient emergency service systems.


Pomorstvo ◽  
2020 ◽  
Vol 34 (1) ◽  
pp. 178-184
Author(s):  
Ivan Peronja ◽  
Kristijan Lenac ◽  
Roko Glavinović

Maritime industry is one of the most globally connected industries that include transportation of numerous types of goods and documents across the world. With that said, it is safe to say that abundance of financial and paper-trail transactions are made every day in order for goods to be transported from one place to another. The scope of this paper is to show that by implementing blockchain technology savings in time and money could be generated. This paper presents costs of container freights and rates in the last few years and assumes possible future costs of container freights and rates if blockchain based technology is implemented. Additionally, by using comparative method economical and time value of “traditional” bill of lading is compared with a blockchain bill of lading solution. It is also important to mention the potential impact of the blockchain technology on the world environment and ecology by reducing global paper consumption and emissions from vehicles that are used in the transportation process. This paper also gives a descriptive and comprehensive overview of current and future applications of blockchain technology in maritime industry.


Queuing Theory provides the system of applications in many sectors in life cycle. Queuing Structure and basic components determination is computed in queuing model simulation process. Distributions in Queuing Model can be extracted in quantitative analysis approach. Differences in Queuing Model Queue discipline, Single and Multiple service station with finite and infinite population is described in Quantitative analysis process. Basic expansions of probability density function, Expected waiting time in queue, Expected length of Queue, Expected size of system, probability of server being busy, and probability of system being empty conditions can be evaluated in this quantitative analysis approach. Probability of waiting ‘t’ minutes or more in queue and Expected number of customer served per busy period, Expected waiting time in System are also computed during the Analysis method. Single channel model with infinite population is used as most common case of queuing problems which involves the single channel or single server waiting line. Single Server model with finite population in test statistics provides the Relationships used in various applications like Expected time a customer spends in the system, Expected waiting time of a customer in the queue, Probability that there are n customers in the system objective case, Expected number of customers in the system


2014 ◽  
Vol 1030-1032 ◽  
pp. 2195-2198
Author(s):  
Xu Guang Min ◽  
Tao Wan ◽  
Jun Fang ◽  
Shan Liu
Keyword(s):  

From what has been discussed above, the design of parallel virtual queuing, means that the passenger chooses the trains, the time, departures and terminals, seat types on TVM by blackening a ticket purchasing card. All the job off the TVM can be done by all the passengers all at once, which is equal to every passenger is being served at the counter (TVM), and thus the queuing time are greatly reduced in peak hours. Therefore, the queuing is equal to “Parallel Virtual Queuing”, and the equivalent queuing model is M/M/∞/∞/∞/FCFS.


2004 ◽  
Vol 100 (5) ◽  
pp. 1271-1276 ◽  
Author(s):  
Michael L. McManus ◽  
Michael C. Long ◽  
Abbot Cooper ◽  
Eugene Litvak

Background Allocation of scarce resources presents an increasing challenge to hospital administrators and health policy makers. Intensive care units can present bottlenecks within busy hospitals, but their expansion is costly and difficult to gauge. Although mathematical tools have been suggested for determining the proper number of intensive care beds necessary to serve a given demand, the performance of such models has not been prospectively evaluated over significant periods. Methods The authors prospectively collected 2 years' admission, discharge, and turn-away data in a busy, urban intensive care unit. Using queuing theory, they then constructed a mathematical model of patient flow, compared predictions from the model to observed performance of the unit, and explored the sensitivity of the model to changes in unit size. Results The queuing model proved to be very accurate, with predicted admission turn-away rates correlating highly with those actually observed (correlation coefficient = 0.89). The model was useful in predicting both monthly responsiveness to changing demand (mean monthly difference between observed and predicted values, 0.4+/-2.3%; range, 0-13%) and the overall 2-yr turn-away rate for the unit (21%vs. 22%). Both in practice and in simulation, turn-away rates increased exponentially when utilization exceeded 80-85%. Sensitivity analysis using the model revealed rapid and severe degradation of system performance with even the small changes in bed availability that might result from sudden staffing shortages or admission of patients with very long stays. Conclusions The stochastic nature of patient flow may falsely lead health planners to underestimate resource needs in busy intensive care units. Although the nature of arrivals for intensive care deserves further study, when demand is random, queuing theory provides an accurate means of determining the appropriate supply of beds.


Sign in / Sign up

Export Citation Format

Share Document