scholarly journals Complex Dynamical Behavior of Holling–Tanner Predator-Prey Model with Cross-Diffusion

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Caiyun Wang ◽  
Yongyong Pei ◽  
Yaqun Niu ◽  
Ruiqiang He

Spatial predator-prey models have been studied by researchers for many years, because the exact distributions of the population can be well illustrated via pattern formation. In this paper, amplitude equations of a spatial Holling–Tanner predator-prey model are studied via multiple scale analysis. First, by amplitude equations, we obtain the corresponding intervals in which different kinds of patterns will be onset. Additionally, we get the conclusion that pattern transitions of the predator are induced by the increasing rate of conversion into predator biomass. Specifically, pattern transitions of the predator between distinct Turing pattern structures vary in an orderly manner: from spotted patterns to stripe patterns, and finally to black-eye patterns. Moreover, it is discovered that pattern transitions of prey can be induced by cross-diffusion; that is, patterns of prey transmit from spotted patterns to stripe patterns and finally to a mixture of spot and stripe patterns. Meanwhile, it is found that both effects of cross-diffusion and interaction between the prey and predator can lead to the complicated phenomenon of dynamics in the system of biology.

2019 ◽  
Vol 29 (11) ◽  
pp. 1950146
Author(s):  
Wen Wang ◽  
Shutang Liu ◽  
Zhibin Liu ◽  
Da Wang

In this paper, a diffusive predator–prey model is considered in which the predator and prey populations both exhibit schooling behavior. The system’s spatial dynamics are captured via a suitable threshold parameter, and a sequence of spatiotemporal patterns such as hexagons, stripes and a mixture of the two are observed. Specifically, the linear stability analysis is applied to obtain the conditions for Hopf bifurcation and Turing instability. Then, employing the multiple-scale analysis, the amplitude equations near the critical point of Turing bifurcation are derived, through which the selection and stability of pattern formations are investigated. The theoretical results are verified by numerical simulations.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xinhong Zhang ◽  
Qing Yang

<p style='text-indent:20px;'>In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of <inline-formula><tex-math id="M1">\begin{document}$ \theta\in(0,1] $\end{document}</tex-math></inline-formula>-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.</p>


2018 ◽  
Vol 28 (11) ◽  
pp. 2131-2159 ◽  
Author(s):  
Willian Cintra ◽  
Cristian Morales-Rodrigo ◽  
Antonio Suárez

In this paper, we study the existence and non-existence of coexistence states for a cross-diffusion system arising from a prey–predator model with a predator satiation term. We use mainly bifurcation methods and a priori bounds to obtain our results. This leads us to study the coexistence region and compare our results with the classical linear diffusion predator–prey model. Our results suggest that when there is no abundance of prey, the predator needs to be a good hunter to survive.


Author(s):  
Feng Rao

Predator–prey models in ecology serve a variety of purposes, which range from illustrating a scientific concept to representing a complex natural phenomenon. Due to the complexity and variability of the environment, the dynamic behavior obtained from existing predator–prey models often deviates from reality. Many factors remain to be considered, such as external forcing, harvesting and so on. In this chapter, we study a spatial version of the Ivlev-type predator-prey model that includes reaction-diffusion, external periodic forcing, and constant harvesting rate on prey. Using this model, we study how external periodic forcing affects the stability of predator-prey coexistence equilibrium. The results of spatial pattern analysis of the Ivlev-type predator-prey model with zero-flux boundary conditions, based on the Euler method and via numerical simulations in MATLAB, show that the model generates rich dynamics. Our results reveal that modeling by reaction-diffusion equations with external periodic forcing and nonzero constant prey harvesting could be used to make general predictions regarding predator-prey equilibrium,which may be used to guide management practice, and to provide a basis for the development of statistical tools and testable hypotheses.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinze Lian ◽  
Shuling Yan ◽  
Hailing Wang

We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


Sign in / Sign up

Export Citation Format

Share Document