scholarly journals Position control for haptic device based on discrete-time proportional integral derivative controller

Author(s):  
Nguyen Van Tan ◽  
Khoa Nguyen Dang ◽  
Pham Duc Dai ◽  
Long Vu Van

Haptic devices had known as advanced technology with the goal is creating the experiences of touch by applying forces and motions to the operator based on force feedback. Especially in unmanned aerial vehicle (UAV) applications, the position of the end-effector Falcon haptic sets the velocity command for the UAV. And the operator can feel the experience vibration of the vehicle as to the acceleration or collision with other objects through a forces feedback to the haptic device. In some emergency cases, the haptic can report to the user the dangerous situation of the UAV by changing the position of the end-effector which is be obtained by changing the angle of the motor using the inverse kinematic equation. But this solution may not accurate due to the disturbance of the system. Therefore, we proposed a position controller for the haptic based on a discrete-time proportional integral derivative (PID) controller. A Novint Falcon haptic is used to demonstrate our proposal. From hardware parameters, a Jacobian matrix is calculated, which combines with the force output from the PID controller to make the torque for the motors of the haptic. The experiment was shown that the PID has high accuracy and a small error position.

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095012
Author(s):  
Li Chen ◽  
Yuxiang Deng ◽  
Qiyuan Gao ◽  
Jinguo Liu

The problem of designing a controller for a multi-vectored propeller airship with independent amplitude and rate saturations is addressed. First, a linear Proportional-Integral-Derivative (PID) controller is introduced for position control without considering the input saturations. Then, two design methods are applied to the traditional PID control output to satisfy the independent amplitude and rate constraints: the nested saturated PID controller (N-PID) and the transformed PID controller (T-PID). The bounded magnitudes and rate outputs of the modified controllers are given. Simulation results showed both controllers have good tracking performance while satisfying independent amplitude and rate saturations. However, the transformed PID controller has the advantage of expressing explicitly the relationship of the actuator magnitude and rate saturations with the parameters of the transformed function such that the actuator saturations are suppressed by calculation but not by trial and error.


The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


Author(s):  
Mervin Joe Thomas ◽  
Shoby George ◽  
Deepak Sreedharan ◽  
ML Joy ◽  
AP Sudheer

The significant challenges seen with the mathematical modeling and control of spatial parallel manipulators are its difficulty in the kinematic formulation and the inability to real-time control. The analytical approaches for the determination of the kinematic solutions are computationally expensive. This is due to the passive joints, solvability issues with non-linear equations, and inherent kinematic constraints within the manipulator architecture. Therefore, this article concentrates on an artificial neural network–based system identification approach to resolve the complexities of mathematical formulations. Moreover, the low computation time with neural networks adds up to its advantage of real-time control. Besides, this article compares the performance of a constant gain proportional–integral–derivative (PID), variable gain proportional–integral–derivative, model predictive controller, and a cascade controller with combined variable proportional–integral–derivative and model predictive controller for real-time tracking of the end-effector. The control strategies are simulated on the Simulink model of a 6-degree-of-freedom 3-PPSS (P—prismatic; S—spherical) parallel manipulator. The simulation and real-time experiments performed on the fabricated manipulator prototype indicate that the proposed cascade controller with position and velocity compensation is an appropriate method for accurate tracking along the desired path. Also, training the network using the experimentally generated data set incorporates the mechanical joint approximations and link deformities present in the fabricated model into the predicted results. In addition, this article showcases the application of Euler–Lagrangian formalism on the 3-PPSS parallel manipulator for its dynamic model incorporating the system constraints. The Lagrangian multipliers include the influence of the constraint forces acting on the manipulator platform. For completeness, the analytical model results have been verified using ADAMS for a pre-defined end-effector trajectory.


SIMULATION ◽  
2017 ◽  
Vol 93 (7) ◽  
pp. 619-630 ◽  
Author(s):  
Sunil Kumar ◽  
Vikas Rastogi ◽  
Pardeep Gupta

A hybrid impedance control scheme for the force and position control of an end-effector is presented in this paper. The interaction of the end-effector is controlled using a passive foundation with compensation gain. For obtaining the steady state, a proportional–integral–derivative controller is tuned with an impedance controller. The hybrid impedance controller is implemented on a terrestrial (ground) single-arm robot manipulator. The modeling is done by creating a bond graph model and efficacy is substantiated through simulation results. Further, the hybrid impedance control scheme is applied on a two-link flexible arm underwater robot manipulator for welding applications. Underwater conditions, such as hydrodynamic forces, buoyancy forces, and other disturbances, are considered in the modeling. During interaction, the minimum distance from the virtual wall is maintained. A simulation study is carried out, which reveals some effective stability of the system.


2012 ◽  
Vol 157-158 ◽  
pp. 88-93 ◽  
Author(s):  
Guang Hui Chang ◽  
Jie Chang Wu ◽  
Chao Jie Zhang

In this paper, an intelligent controller of PM DC Motor drive is designed using particle swarm optimization (PSO) method for tuning the optimal proportional-integral-derivative (PID) controller parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency.To show the validity of the PID-PSO controller, a DC motor position control case is considered and some simulation results are shown. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment.. It can be easily seen from the simulation results that the proposed method will have better performance than those presented in other studies.


2014 ◽  
Vol 903 ◽  
pp. 327-331 ◽  
Author(s):  
Ismail Mohd Khairuddin ◽  
Anwar P.P.A. Majeed ◽  
Ann Lim ◽  
Jessnor Arif M. Jizat ◽  
Abdul Aziz Jaafar

This paper elucidates the modeling of a + quadrotor configuration aerial vehicle and the design of its attitude and altitude controllers. The aircraft model consists of four fixed pitch angle propeller, each driven by an electric DC motor. The hovering flight of the quadrotor is governed by the Newton-Euler formulation. The attitude and altitude controls of the aircraft were regulated using heuristically tuned (Proportional-Integral-Derivative) PID controller. It was numerically simulated via Simulink that a PID controller was sufficient to bring the aircraft to the required altitude whereas the attitude of the vehicle is adequately controlled by a PD controller.


Author(s):  
Michael J. Toth ◽  
Colby F. Lewallen ◽  
Joseph C. Hanson ◽  
Shenghai Wang ◽  
William Singhose

It is difficult for crane operators to lift and maneuver payloads without causing significant, uncontrolled motion. Consequently, research in the area of crane operation has focused on designing controllers to minimize payload swing. However, lifting long and slender payloads (e.g., steel I-beams) from a non-level surface (e.g., like many outdoor construction sites) has not been addressed in much detail. This paper evaluates the amplitude of residual swing and robustness of two different control methodologies while hoisting a slender payload up into the air from an inclined surface. A semi-automatic approach, where the crane operator controls the lift direction and a proportional-integral-derivative (PID) controller adjusts the overhead trolley position, was developed. Experimental tests demonstrate that this method reduces the peak amplitude of residual vibration by about 80% for most non-zero incline angles.


Sign in / Sign up

Export Citation Format

Share Document