scholarly journals Efficient electro encephelogram classification system using support vector machine classifier and adaptive learning technique

Author(s):  
Virupaxi Balachandra Dalal ◽  
Satish S. Bhairannawar

Complex <span>modern signal processing is used to automate the analysis of electro encephelogram (EEG) signals. For the diagnosis of seizures, approaches that are simple and precise may be preferable rather than difficult and time-consuming. In this paper, efficient EEG classification system using support vector machine (SVM) and Adaptive learning technique is proposed. The database EEG signals are subjected to temporal and spatial filtering to remove unwanted noise and to increase the detection accuracy of the classifier by selecting the specific bands in which most of the EEG data are present. The neural network based SVM is used to classify the test EEG data with respect to training data. The cost-sensitive SVM with proposed Adaptive learning classifies the EEG signals where the adaptive learning with probability based function helps in prediction of the future samples and this leads in improving the accuracy with detection time. The detection accuracy of the proposed algorithm is compared with existing which shows that the proposed algorithm can classify the EEG signal more </span>effectively.

2021 ◽  
Vol 11 (1) ◽  
pp. 25-32
Author(s):  
Qi Xin ◽  
Shaohai Hu ◽  
Shuaiqi Liu ◽  
Xiaole Ma ◽  
Hui Lv ◽  
...  

Clinical Electroencephalogram (EEG) data is of great significance to realize automatable detection, recognition and diagnosis to reduce the valuable diagnosis time. To make a classification of epilepsy, we constructed convolution support vector machine (CSVM) by integrating the advantages of convolutional neural networks (CNN) and support vector machine (SVM). To distinguish the focal and non-focal epilepsy EEG signals, we firstly reduced the dimensionality of EEG signals by using principal component analysis (PCA). After that, we classified the epilepsy EEG signals by the CSVM. The accuracy, sensitivity and specificity of our method reach up to 99.56%, 99.72% and 99.52% respectively, which are competitive than the widely acceptable algorithms. The proposed automatic end to end epilepsy EEG signals classification algorithm provides a better reference for clinical epilepsy diagnosis.


Author(s):  
Ahmed Abdal Shafi Rasel

This study focuses on entropy based analysis of EEG signals for extracting features for a neural network based solution for identifying anesthetic levels. The process involves an optimized back propagation neural network with a supervised learning method. We provided the extracted features from EEG signals as training data for the neural network. The target outputs provided are levels of anesthesia stages. Wavelet analysis provides more effective extraction of key features from EEG data than power spectral density analysis using Fourier transform. The key features are used to train the Back Propagation Neural Network (BPNN) for pattern classification network. The final result shows that entropy-based feature extraction is an effective procedure for classifying EEG data.


Author(s):  
Ajeng Maharani Putri ◽  
Zuherman Rustam ◽  
Jacub Pandelaki ◽  
Ilsya Wirasati ◽  
Sri Hartini

<span id="docs-internal-guid-ebf19048-7fff-9350-093e-7f1e8df23393"><span>Acute sinusitis is the most common form of sinusitis, and it causes swelling and inflammation within the nose. The main thing that can causes sinusitis is probably due to viruses, and also can be caused by other factors, namely bacteria, fungi, irritation, dust, and allergens. In this research, the CT scan data attributes will be used for classification and grey wolf optimization-support vector machine (GWO-SVM) will be the machine learning technique used, where the GWO technique will be used to tuned the parameters in SVM. The performance of methods was analyzed using the python programming language with different percentages of training data, which started from 10% to 90%. The GWO-SVM method proposed provides better accuracy than using SVM without GWO.</span></span>


2020 ◽  
Vol 32 (4) ◽  
pp. 724-730
Author(s):  
Shin-ichi Ito ◽  
◽  
Momoyo Ito ◽  
Minoru Fukumi

We propose a method to detect human wants by using an electroencephalogram (EEG) test and specifying brain activity sensing positions. EEG signals can be analyzed by using various techniques. Recently, convolutional neural networks (CNNs) have been employed to analyze EEG signals, and these analyses have produced excellent results. Therefore, this paper employs CNN to extract EEG features. Also, support vector machines (SVMs) have shown good results for EEG pattern classification. This paper employs SVMs to classify the human cognition into “wants,” “not wants,” and “other feelings.” In EEG measurements, the electrical activity of the brain is recorded using electrodes placed on the scalp. The sensing positions are related to the frontal cortex and/or temporal cortex activities although the mechanism to create wants is not clear. To specify the sensing positions and detect human wants, we conducted experiments using real EEG data. We confirmed that the mean and standard deviation values of the detection accuracy rate were 99.4% and 0.58%, respectively, when the target sensing positions were related to the frontal and temporal cortex activities. These results prove that both the frontal and temporal cortex activities are relevant for creating wants in the human brain, and that CNN and SVM are effective for the detection of human wants.


2019 ◽  
Vol 6 (5) ◽  
pp. 190001 ◽  
Author(s):  
Katherine E. Klug ◽  
Christian M. Jennings ◽  
Nicholas Lytal ◽  
Lingling An ◽  
Jeong-Yeol Yoon

A straightforward method for classifying heavy metal ions in water is proposed using statistical classification and clustering techniques from non-specific microparticle scattering data. A set of carboxylated polystyrene microparticles of sizes 0.91, 0.75 and 0.40 µm was mixed with the solutions of nine heavy metal ions and two control cations, and scattering measurements were collected at two angles optimized for scattering from non-aggregated and aggregated particles. Classification of these observations was conducted and compared among several machine learning techniques, including linear discriminant analysis, support vector machine analysis, K-means clustering and K-medians clustering. This study found the highest classification accuracy using the linear discriminant and support vector machine analysis, each reporting high classification rates for heavy metal ions with respect to the model. This may be attributed to moderate correlation between detection angle and particle size. These classification models provide reasonable discrimination between most ion species, with the highest distinction seen for Pb(II), Cd(II), Ni(II) and Co(II), followed by Fe(II) and Fe(III), potentially due to its known sorption with carboxyl groups. The support vector machine analysis was also applied to three different mixture solutions representing leaching from pipes and mine tailings, and showed good correlation with single-species data, specifically with Pb(II) and Ni(II). With more expansive training data and further processing, this method shows promise for low-cost and portable heavy metal identification and sensing.


2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.


Sign in / Sign up

Export Citation Format

Share Document