scholarly journals IoT: Communication Protocols and Security Threats

Author(s):  
Apostolos Gerodimos ◽  
Leandros Maglaras ◽  
Ioanna Kantzavelou ◽  
NIck Ayres

The IoT is recognized as one of the most important areas of future technology and is gaining vast attention from a wide range of industries. Although, after 20 years from the first published literature (2002) the technology (as a whole) is not yet mature. In this study we will review the basics of IoT with a general approach, by addressing the problems of a standard architecture, vulnerabilities and use cases of this promising technology. Moreover, we will review some of the communication protocols that have invented especially for IoT technology, security threats and general implementation challenges.

Author(s):  
Apostolos Gerodimos ◽  
Leandros Maglaras ◽  
NIck Ayres

The IoT is recognized as one of the most important areas of future technology and is gaining vast attention from a wide range of industries. Although, after 20 years from the first published literature (2002) the technology (as a whole) is not yet mature. In this study we will review the basics of IoT with a general approach, by addressing the problems of a standard architecture, vulnerabilities and use cases of this promising technology. Moreover, we will review some of the communication protocols that have invented especially for IoT technology, security threats and general implementation challenges.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3871
Author(s):  
Jiri Pokorny ◽  
Khanh Ma ◽  
Salwa Saafi ◽  
Jakub Frolka ◽  
Jose Villa ◽  
...  

Automated systems have been seamlessly integrated into several industries as part of their industrial automation processes. Employing automated systems, such as autonomous vehicles, allows industries to increase productivity, benefit from a wide range of technologies and capabilities, and improve workplace safety. So far, most of the existing systems consider utilizing one type of autonomous vehicle. In this work, we propose a collaboration of different types of unmanned vehicles in maritime offshore scenarios. Providing high capacity, extended coverage, and better quality of services, autonomous collaborative systems can enable emerging maritime use cases, such as remote monitoring and navigation assistance. Motivated by these potential benefits, we propose the deployment of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV) in an autonomous collaborative communication system. Specifically, we design high-speed, directional communication links between a terrestrial control station and the two unmanned vehicles. Using measurement and simulation results, we evaluate the performance of the designed links in different communication scenarios and we show the benefits of employing multiple autonomous vehicles in the proposed communication system.


Author(s):  
Matt Woodburn ◽  
Gabriele Droege ◽  
Sharon Grant ◽  
Quentin Groom ◽  
Janeen Jones ◽  
...  

The utopian vision is of a future where a digital representation of each object in our collections is accessible through the internet and sustainably linked to other digital resources. This is a long term goal however, and in the meantime there is an urgent need to share data about our collections at a higher level with a range of stakeholders (Woodburn et al. 2020). To sustainably achieve this, and to aggregate this information across all natural science collections, the data need to be standardised (Johnston and Robinson 2002). To this end, the Biodiversity Information Standards (TDWG) Collection Descriptions (CD) Interest Group has developed a data standard for describing collections, which is approaching formal review for ratification as a new TDWG standard. It proposes 20 classes (Suppl. material 1) and over 100 properties that can be used to describe, categorise, quantify, link and track digital representations of natural science collections, from high-level approximations to detailed breakdowns depending on the purpose of a particular implementation. The wide range of use cases identified for representing collection description data means that a flexible approach to the standard and the underlying modelling concepts is essential. These are centered around the ‘ObjectGroup’ (Fig. 1), a class that may represent any group (of any size) of physical collection objects, which have one or more common characteristics. This generic definition of the ‘collection’ in ‘collection descriptions’ is an important factor in making the standard flexible enough to support the breadth of use cases. For any use case or implementation, only a subset of classes and properties within the standard are likely to be relevant. In some cases, this subset may have little overlap with those selected for other use cases. This additional need for flexibility means that very few classes and properties, representing the core concepts, are proposed to be mandatory. Metrics, facts and narratives are represented in a normalised structure using an extended MeasurementOrFact class, so that these can be user-defined rather than constrained to a set identified by the standard. Finally, rather than a rigid underlying data model as part of the normative standard, documentation will be developed to provide guidance on how the classes in the standard may be related and quantified according to relational, dimensional and graph-like models. So, in summary, the standard has, by design, been made flexible enough to be used in a number of different ways. The corresponding risk is that it could be used in ways that may not deliver what is needed in terms of outputs, manageability and interoperability with other resources of collection-level or object-level data. To mitigate this, it is key for any new implementer of the standard to establish how it should be used in that particular instance, and define any necessary constraints within the wider scope of the standard and model. This is the concept of the ‘collection description scheme,’ a profile that defines elements such as: which classes and properties should be included, which should be mandatory, and which should be repeatable; which controlled vocabularies and hierarchies should be used to make the data interoperable; how the collections should be broken down into individual ObjectGroups and interlinked, and how the various classes should be related to each other. which classes and properties should be included, which should be mandatory, and which should be repeatable; which controlled vocabularies and hierarchies should be used to make the data interoperable; how the collections should be broken down into individual ObjectGroups and interlinked, and how the various classes should be related to each other. Various factors might influence these decisions, including the types of information that are relevant to the use case, whether quantitative metrics need to be captured and aggregated across collection descriptions, and how many resources can be dedicated to amassing and maintaining the data. This process has particular relevance to the Distributed System of Scientific Collections (DiSSCo) consortium, the design of which incorporates use cases for storing, interlinking and reporting on the collections of its member institutions. These include helping users of the European Loans and Visits System (ELViS) (Islam 2020) to discover specimens for physical and digital loans by providing descriptions and breakdowns of the collections of holding institutions, and monitoring digitisation progress across European collections through a dynamic Collections Digitisation Dashboard. In addition, DiSSCo will be part of a global collections data ecosystem requiring interoperation with other infrastructures such as the GBIF (Global Biodiversity Information Facility) Registry of Scientific Collections, the CETAF (Consortium of European Taxonomic Facilities) Registry of Collections and Index Herbariorum. In this presentation, we will introduce the draft standard and discuss the process of defining new collection description schemes using the standard and data model, and focus on DiSSCo requirements as examples of real-world collection descriptions use cases.


2019 ◽  
Author(s):  
Helmut Spengler ◽  
Claudia Lang ◽  
Tanmaya Mahapatra ◽  
Ingrid Gatz ◽  
Klaus A Kuhn ◽  
...  

BACKGROUND Modern data-driven medical research provides new insights into the development and course of diseases and enables novel methods of clinical decision support. Clinical and translational data warehouses, such as Informatics for Integrating Biology and the Bedside (i2b2) and tranSMART, are important infrastructure components that provide users with unified access to the large heterogeneous data sets needed to realize this and support use cases such as cohort selection, hypothesis generation, and ad hoc data analysis. OBJECTIVE Often, different warehousing platforms are needed to support different use cases and different types of data. Moreover, to achieve an optimal data representation within the target systems, specific domain knowledge is needed when designing data-loading processes. Consequently, informaticians need to work closely with clinicians and researchers in short iterations. This is a challenging task as installing and maintaining warehousing platforms can be complex and time consuming. Furthermore, data loading typically requires significant effort in terms of data preprocessing, cleansing, and restructuring. The platform described in this study aims to address these challenges. METHODS We formulated system requirements to achieve agility in terms of platform management and data loading. The derived system architecture includes a cloud infrastructure with unified management interfaces for multiple warehouse platforms and a data-loading pipeline with a declarative configuration paradigm and meta-loading approach. The latter compiles data and configuration files into forms required by existing loading tools, thereby automating a wide range of data restructuring and cleansing tasks. We demonstrated the fulfillment of the requirements and the originality of our approach by an experimental evaluation and a comparison with previous work. RESULTS The platform supports both i2b2 and tranSMART with built-in security. Our experiments showed that the loading pipeline accepts input data that cannot be loaded with existing tools without preprocessing. Moreover, it lowered efforts significantly, reducing the size of configuration files required by factors of up to 22 for tranSMART and 1135 for i2b2. The time required to perform the compilation process was roughly equivalent to the time required for actual data loading. Comparison with other tools showed that our solution was the only tool fulfilling all requirements. CONCLUSIONS Our platform significantly reduces the efforts required for managing clinical and translational warehouses and for loading data in various formats and structures, such as complex entity-attribute-value structures often found in laboratory data. Moreover, it facilitates the iterative refinement of data representations in the target platforms, as the required configuration files are very compact. The quantitative measurements presented are consistent with our experiences of significantly reduced efforts for building warehousing platforms in close cooperation with medical researchers. Both the cloud-based hosting infrastructure and the data-loading pipeline are available to the community as open source software with comprehensive documentation. CLINICALTRIAL


Author(s):  
Aravind Karrothu ◽  
Jasmine Norman

Light-weight cryptography is a major research area due to the minimization of the size of the devices utilized for such services. The associated security threats do increase as their applications are more now. Identity-Based Encryption (IBE) with its wide range of cryptographic schemes and protocols is specifically found suitable for low-end devices that have much resource constraint. This work describes various schemes and protocols in IBE. In this paper an analysis of IBE schemes and the various attacks they are prone to are discussed. The future trends are found to be very promising and challenging.


2019 ◽  
Vol 9 (10) ◽  
pp. 2081 ◽  
Author(s):  
Hua Wang ◽  
Yongli Zhao ◽  
Avishek Nag

As an important support for quantum communication, quantum key distribution (QKD) networks have achieved a relatively mature level of development, and they face higher requirements for multi-user end-to-end networking capabilities. Thus, QKD networks need an effective management plane to control and coordinate with the QKD resources. As a promising technology, software defined networking (SDN) can separate the control and management of QKD networks from the actual forwarding of the quantum keys. This paper systematically introduces QKD networks enabled by SDN, by elaborating on its overall architecture, related interfaces, and protocols. Then, three-use cases are provided as important paradigms with their corresponding schemes and simulation performances.


2020 ◽  
Vol 14 (4) ◽  
pp. 113-133
Author(s):  
Mary Shamala L. ◽  
Zayaraz G. ◽  
Vivekanandan K. ◽  
Vijayalakshmi V.

Internet of things (IoT) is a global network of uniquely addressable interconnected things, based on standard communication protocols. As the number of devices connected to the IoT escalates, they are becoming a likely target for hackers. Also, the limited resources of IoT devices makes the security on top of the actual functionality of the device. Therefore, the cryptographic algorithm for such devices has to be devised as small as possible. To tackle the resource constrained nature of IoT devices, this article presents a lightweight cryptography algorithm based on a single permutation and iterated Even-Mansour construction. The proposed algorithm is implemented in low cost microcontrollers, thus making it suitable for a wide range of IoT nodes.


2018 ◽  
Vol 11 (1) ◽  
pp. 4 ◽  
Author(s):  
Dania Marabissi ◽  
Lorenzo Mucchi ◽  
Romano Fantacci ◽  
Maria Spada ◽  
Fabio Massimiani ◽  
...  

The fifth generation (5G) of wireless communication systems is considered the key technology to enable a wide range of application scenarios and the effective spreading of the smart city concept. Vertical business use cases, specifically designed for the future 5G city, will have a strong economical and social impact. For this reason, ongoing 5G field trials have to test newly deployed technologies as well as the capability of 5G to create a new digital economy. This paper describes the 5G field trial environment that was launched in Italy at the end of 2017. The aim is to evaluate the capability of the 5G network of supporting innovative services with reference to suitably designed key performance indicators and to evaluate the opportunities offered by these services. Indeed, vertical business use cases, specifically designed for the future 5G city, with a strong economic and social impact, are under implementation and will be evaluated. In particular, the paper provides a detailed description of the deployment of an actual complete integrated 5G network. It shows how 5G is effective enabling technology for a wide range of vertical business and use cases. Indeed, its flexibility allows to satisfy completely different performance requirements of real services. Some preliminary results, obtained during the first phase, are presented for a smart mobility scenario.


2019 ◽  
Vol 1 (3) ◽  
pp. 201-223 ◽  
Author(s):  
Guohui Xiao ◽  
Linfang Ding ◽  
Benjamin Cogrel ◽  
Diego Calvanese

In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1762
Author(s):  
Adel Merabet

In the Special Issue “Advanced Control for Electric Drives”, the objective is to address a variety of issues related to advances in control techniques for electric drives, implementation challenges, and applications in emerging fields such as electric vehicles, unmanned aerial vehicles, maglev trains and motion applications. This issue includes 15 selected and peer-reviewed articles discussing a wide range of topics, where intelligent control, estimation and observation schemes were applied to electric drives for various applications. Different drives were studied such as induction motors, permanent magnet synchronous motors and brushless direct current motors.


Sign in / Sign up

Export Citation Format

Share Document