Solid-State Gyro Technology Allows Safe And Reliable Real-Time Remote Operations

2021 ◽  
Author(s):  
Adrián Ledroz ◽  
Barry Smart ◽  
Navin Maharaj

Abstract There are several reasons for obtaining gyroscopic surveys in directional wells. A gyro measurement provides reliable data when magnetic measurements are affected by interference from nearby wells; it can significantly reduce the positional uncertainty and provides redundancy data and gross error checks on MWD surveys. However, the complexity and extent of the necessary testing and handling of the tools have prevented widespread adoption, and gyro services have remained limited to "must-have" scenarios. The benefits of solid-state technology and new developments in communication capabilities are gradually changing the way of thinking related to wellbore positioning. The first gyro while drilling tools were introduced in the early 2000s and were based on spinning mass gyro technology. These gyros can be very accurate with low noise levels and drift; however, they are fragile, built with moving parts, and susceptible to calibration shifts. Extensive pre-job testing, validation during job execution and post-job analysis are required to obtain reliable directional survey data. Solid-state gyros have reached the same, or even better, levels of noise and drift without the fragility of their spinning mass counterpart. With different degrees of complexity and coverage, remote operations have been used for many years in the oilfield. Still, the adoption of monitoring gyro services with no personnel at the rig-site has been minimal due to the described complexity of the system and the small volume of jobs that prevented investment and the development of the necessary processes. Solid-state gyro technology addresses these challenges More than 30 gyro-while-drilling jobs have successfully run remotely. The changes in operational procedures forced by the Covid-19 pandemic accelerated the demand for uncrewed operations, and solid-state gyro technology has shown high reliability with zero non-productive time due to tool failures or shifts in the calibration. This new way of working also results in a significant reduction in the environmental impact of the operations as all travel related to personnel and equipment has been reduced and battery life extended by up to 10. Several scenarios related to wellbore positioning and directional drilling greatly benefit by having a gyro in the BHA. The gyro technology and the workflow described in this paper show how this can be done reliably, maintaining the quality of the survey data and reducing the environmental impact.

Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4274
Author(s):  
Eunsuk Choi ◽  
Sunjin Kim ◽  
Jinsil Gong ◽  
Hyeonjeong Sun ◽  
Minjin Kwon ◽  
...  

In this article we report on a 3 × 3 mm tactile interaction sensor that is able to simultaneously detect pressure level, pressure distribution, and shear force direction. The sensor consists of multiple mechanical switches under a conducting diaphragm. An external stimulus is measured by the deflection of the diaphragm and the arrangement of mechanical switches, resulting in low noise, high reliability, and high uniformity. Our sensor is able to detect tactile forces as small as ~50 mgf along with the direction of the shear force. It also distinguishes whether there is a normal pressure during slip motion. We also succeed in detecting the contact shape and the contact motion, demonstrating potential applications in robotics and remote input interfaces. Since our sensor has a simple structure and its function depends only on sensor dimensions, not on an active sensing material, in comparison with previous tactile sensors, our sensor shows high uniformity and reliability for an array-type integration.


Nanoscale ◽  
2021 ◽  
Author(s):  
Nasim Farajpour ◽  
Lauren Lastra ◽  
Vinay Sharma ◽  
Kevin Freedman

Nanopore sensing is a promising tool with widespread application in single-molecule detection. Borosilicate glass nanopores are a viable alternative to other solid-state nanopores due to low noise and cost-efficient fabrication....


2021 ◽  
Author(s):  
Jorge Heredia ◽  
Jan Egil Tengesdal ◽  
Rune Hobberstad ◽  
Julien Marck ◽  
Harald Kleivenes ◽  
...  

Abstract A pilot program for automated directional drilling was implemented as a part of the roll out plan in Norway to drill three dimensional wells in an automated mode, where steering commands were carried out automatically by the automation platform. The rollout plan also targeted the use of remote operations to allow personnel to be relocated from the rig location into remote drilling centers. The goal of the program was to optimize the directional drilling performance by assessing the benefits of automation using the latest rotary steerable system technologies and machine learning smart algorithms to predict and manipulated the BHA performance, as well as the ability to predict the best drilling parameters for hole cleaning. The automation was implemented on three different rigs and the data was compared with the drilling performance from the last two years, with three dimensional wells drilled in the conventional method. The main benefits between drilling wells in the conventional method versus drilling wells with the new drilling automation model include the following. Reduce the overall cost per meter –  Improve the rate of penetration –  Improve running casings Consistence process adherence –  Reduce human errors –  Reduce POB without sacrificing lost of technical experience Optimize workforce resources –  Allows continuity of service (COVID-19 restrictions) Drilling automation can drill smoother wells by reducing the friction factors and tortuosity. This is translated in direct cost savings per meter and reduction in the overall well delivery time, with the advantage of performing the execution and monitoring of the well performance remotely. This new drilling model open the door of new opportunities, especially for the challenges where the work force resources, and drilling performance is a priority for the operations.


2018 ◽  
Vol 73 (11) ◽  
pp. 793-801
Author(s):  
Aleksej Jochim ◽  
Christian Näther

AbstractReaction of Mn(NCS)2with pyrazole leads to the formation of three compounds with the compositions Mn(NCS)2(pyrazole)4(1), [Mn(NCS)2]2(pyrazole)6(2) and Mn(NCS)2(pyrazole)2(3). Compound1, already reported in the literature, consists of discrete complexes, in which the Mn(II) cations are octahedrally coordinated by four pyrazole ligands and two terminally N-bonded thiocyanate anions. In compound2each of the two Mn(II) cations are coordinated octahedrally by three pyrazole ligands and one terminal as well as two bridging thiocyanate anions, which link the metal cations into dimers. In compound3also octahedrally coordinated Mn(II) cations are present but they are linked into chainsviacentrosymmetric pairs ofμ-1,3-bridging thiocyanate anions. Upon heating compound1loses the pyrazole co-ligands stepwise and is transformed into the chain compound3viathe dimer2that is formed as an intermediate. Magnetic measurements on compounds2and3reveal dominating antiferromagnetic interactions, as already observed for 1D Mn(NCS)2coordination compounds with pyridine based co-ligands.


2013 ◽  
Vol 115 (1) ◽  
pp. 137-139
Author(s):  
Qianqian Liu ◽  
Min Yang ◽  
Yi Yao ◽  
Ling Zhao ◽  
Bin Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 48 (5) ◽  
pp. 0501002
Author(s):  
张宽收 Zhang Kuanshou ◽  
卢华东 Lu Huadong ◽  
李渊骥 Li Yuanji ◽  
冯晋霞 Feng Jinxia

Sign in / Sign up

Export Citation Format

Share Document