circPTP4A2-miR-330-5p-PDK2 Signaling Facilitates In Vivo Survival of HuMSCs on SF-SIS Scaffolds and Improves The Repair of Damaged Endometrium

Author(s):  
Yuanyuan Zheng ◽  
Linhao Li ◽  
Xuewei Bi ◽  
Ruyue Xue

Abstract Background Human umbilical cord MSCs (HuMSC)-based therapy has shown promising results in the treatment of intrauterine adhesions (lUA). In this study, our aim was to construct a HuMSC-seeded silk fibroin small-intestinal submucosa (SF-SIS) scaffold and evaluate the impact of repairing the damaged endometrium in an lUA mouse model. Methods To identify the functional effect of HuMSCs-silk cellulose (SF)- small-intestinal submucosa (SIS) scaffolds on the repair of damaged endometrium, a mouse lUA model was established in this study. The uterine morphology and fibrosis were evaluated by hematoxylin - eosin (H&E) staining and Masson staining. CircRNA sequencing, real-time PCR and RNA fluorescence in situ hybridization were used to screen and verify the potential circRNAs that involved in the repair of damaged endometrium by HuMSCs. Real time integrated cellular oxygen consumption rate (OCR) was measured using the Seahorse XF24 Extracellular Flux Analyser. The potential down-stream miRNAs and proteins of circRNAs were analyzed dual-luciferase report and Western Blot. Results We found that HuMSCs-SF-SIS not only increased the number of glands, but also reduced the ulcer area in the IUA model. Furthermore, we demonstrated that circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. Conclusion In this study, we demonstrated that circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. These findings demonstrate that HuMSC-seeded SF-SIS scaffolds are an encouraging method for the treatment of lUA.

2011 ◽  
Vol 420 (2) ◽  
pp. 266-273 ◽  
Author(s):  
Kkot Nim Kang ◽  
Da Yeon Kim ◽  
So Mi Yoon ◽  
Jin Seon Kwon ◽  
Hyo Won Seo ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Weiyi Wu ◽  
Bowen Li ◽  
Yuhua Liu ◽  
Xinzhi Wang ◽  
Lin Tang

A barrier membrane (BM) is essential for guided bone regeneration (GBR) procedures. Absorbable BMs based on collagen have been widely applied clinically due to their excellent biocompatibility. The extracellular matrix (ECM) provides certain advantages that can compensate for the rapid degradation and insufficient mechanical strength of pure collagen membrane due to the porous scaffold structure. Recently, small intestinal submucosa (SIS), one of the most widely used ECM materials, has drawn much attention in bone tissue engineering. In this study, we adopted multilaminate SIS (mSIS) as a BM and evaluated its in vivo and in vitro properties. mSIS exhibited a multilaminate structure with a smooth upper surface and a significantly coarser bottom layer according to microscopic observation. Tensile strength was 13.10 ± 2.56 MPa. In in vivo experiments, we selected a rabbit mandibular defect model and subcutaneous implantation to compare osteogenesis and biodegradation properties with one of the most commonly used commercial collagen membranes. mSIS was retained for up to 3 months and demonstrated longer biodegradation time than commercial collagen membrane. Quantification of bone regeneration revealed significant differences in each group. Micro-computed tomography (micro-CT) revealed that the quantity and maturity of bones in the mSIS group were significantly higher than those in the blank control group (P < 0.05) and were similar to those in a commercial collagen membrane group (P > 0.05) at 4 and 12 weeks after surgery. Hematoxylin and eosin staining revealed large amounts of mature lamellar bone at 12 weeks in mSIS and commercial collagen membrane groups. Therefore, we conclude that mSIS has potential as a future biocompatible BM in GBR procedures.


ASAIO Journal ◽  
2002 ◽  
Vol 48 (2) ◽  
pp. 197
Author(s):  
Dai Kimura ◽  
Tatsuo Nakamura ◽  
Kenji Kaino ◽  
Yoshio Hori ◽  
Masaki Nio ◽  
...  

2010 ◽  
Vol 16 (5) ◽  
pp. 1761-1768 ◽  
Author(s):  
Taku Nishimura ◽  
Tomio Ueno ◽  
Hiroki Nakatsu ◽  
Atsunori Oga ◽  
Sei Kobayashi ◽  
...  

2019 ◽  
Vol XIV (2) ◽  
Author(s):  
А.А. Dolgalev ◽  
А.А. Venediktov ◽  
D.V. Bobryshev ◽  
А.D. Kruchinina ◽  
А.А. Chagarov ◽  
...  

Biomaterials ◽  
2001 ◽  
Vol 22 (19) ◽  
pp. 2653-2659 ◽  
Author(s):  
Rae D Record ◽  
Darren Hillegonds ◽  
Cassandra Simmons ◽  
Robert Tullius ◽  
Frank A Rickey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document