Knowledge Acquisition for Expert Systems in Construction.

1987 ◽  
Author(s):  
E. G. Trimble ◽  
R. J. Allwood ◽  
A. E. Bryman
1986 ◽  
Author(s):  
E. G. Trimble ◽  
R. J. Allwood ◽  
A. E. Bryman

2021 ◽  
Vol 13 (9) ◽  
pp. 4640
Author(s):  
Seung-Yeoun Choi ◽  
Sean-Hay Kim

New functions and requirements of high performance building (HPB) being added and several regulations and certification conditions being reinforced steadily make it harder for designers to decide HPB designs alone. Although many designers wish to rely on HPB consultants for advice, not all projects can afford consultants. We expect that, in the near future, computer aids such as design expert systems can help designers by providing the role of HPB consultants. The effectiveness and success or failure of the solution offered by the expert system must be affected by the quality, systemic structure, resilience, and applicability of expert knowledge. This study aims to set the problem definition and category required for existing HPB designs, and to find the knowledge acquisition and representation methods that are the most suitable to the design expert system based on the literature review. The HPB design literature from the past 10 years revealed that the greatest features of knowledge acquisition and representation are the increasing proportion of computer-based data analytics using machine learning algorithms, whereas rules, frames, and cognitive maps that are derived from heuristics are conventional representation formalisms of traditional expert systems. Moreover, data analytics are applied to not only literally raw data from observations and measurement, but also discrete processed data as the results of simulations or composite rules in order to derive latent rule, hidden pattern, and trends. Furthermore, there is a clear trend that designers prefer the method that decision support tools propose a solution directly as optimizer does. This is due to the lack of resources and time for designers to execute performance evaluation and analysis of alternatives by themselves, even if they have sufficient experience on the HPB. However, because the risk and responsibility for the final design should be taken by designers solely, they are afraid of convenient black box decision making provided by machines. If the process of using the primary knowledge in which frame to reach the solution and how the solution is derived are transparently open to the designers, the solution made by the design expert system will be able to obtain more trust from designers. This transparent decision support process would comply with the requirement specified in a recent design study that designers prefer flexible design environments that give more creative control and freedom over design options, when compared to an automated optimization approach.


Author(s):  
Debbie Richards

Knowledge is becoming increasingly recognized as a valuable resource. Given its importance it is surprising that expert systems technology has not become a more common means of utilizing knowledge. In this chapter we review some of the history of expert systems, the shortcomings of first generation expert systems, current approaches and future decisions. In particular we consider a knowledge acquisition and representation technique known as Ripple Down Rules (RDR) that avoids many of the limitations of earlier systems by providing a simple, user-driven knowledge acquisition approach based on the combined use of rules and cases and which support online validation and easy maintenance. RDR has found particular commercial success as a clinical decision support system and we review what features of RDR make it so suited to this domain.


Author(s):  
R. Manjunath

Expert systems have been applied to many areas of research to handle problems effectively. Designing and implementing an expert system is a difficult job, and it usually takes experimentation and experience to achieve high performance. The important feature of an expert system is that it should be easy to modify. They evolve gradually. This evolutionary or incremental development technique has to be noticed as the dominant methodology in the expert-system area. The simple evolutionary model of an expert system is provided in B. Tomic, J. Jovanovic, & V. Devedzic, 2006. Knowledge acquisition for expert systems poses many problems. Expert systems depend on a human expert to formulate knowledge in symbolic rules. The user can handle the expert systems by updating the rules through user interfaces (J. Jovanovic, D. Gasevic, V. Devedzic, 2004). However, it is almost impossible for an expert to describe knowledge entirely in the form of rules. An expert system may therefore not be able to diagnose a case that the expert is able to. The question is how to extract experience from a set of examples for the use of expert systems.


Sign in / Sign up

Export Citation Format

Share Document