scholarly journals Rancang Bangun Sistem Catu Daya dengan Metode Switching Mode Power Supply (SMPS) Berbasis Arduino untuk Aplikasi Electrospinner

2020 ◽  
Vol 8 (1) ◽  
pp. 25-34
Author(s):  
Khoirul Effendi ◽  
◽  
Junaidi Junaidi ◽  
Sri Wahyu Suciyati ◽  
◽  
...  

Research about power supplies has been developed for various requirement. The power supply is used to supply electronic devices and laboratory-scale equipment, one of which is electrospinner. Electrospinner is an instrument used to make nanofibers consisting of several components, namely: power supply, high voltage, syringe pump, and collector drum. Electrospinner requires a stable supply of voltage so that the system can work well and requires a lot of voltage supply to supply components from the electrospinner. Arduino-based switching mode power supply (SMPS) is designed in this research. Arduino-based SMPS makes it possible to produce a stable supply with many outputs. Arduino as a PWM generator is used to control the power supply output voltage based on duty cycle. The results of the study addressed the duty cycle affecting the output of the power supply. The output voltage generated by the power supply can be set from 0-100 V with an accuracy of 98.19%, an error of 1.81% and a precision of 0.02% which is stated by the variation of the coefficient. The power supply produced also has an extra output voltage of 15 VCT and 15 V.

2015 ◽  
Vol 771 ◽  
pp. 145-148 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Dian Ahmad Hapidin ◽  
Khairurrijal

Research on nanofiber materials is actively done around the world today. Various types of nanofibers have been synthesized using an electrospinning technique. The most important component when synthesizing nanofibers using the electrospinning technique is a DC high voltage power supply. Some requirements must be fulfilled by the high voltage power supply, i.e., it must be adjustable and its output voltage reaches tens of kilovolts. This paper discusses the design and development of a high voltage power supply using a diode-split transformer (DST)-type high voltage flyback transformer (HVFBT). The DST HVFBT was chosen because of its simplicity, compactness, inexpensiveness, and easiness of finding it. A pulse-width modulation (PWM) circuit with controlling frequency and duty cycle was fed to the DST HVFBT. The high voltage power supply was characterized by the frequency and duty cycle dependences of its output voltage. Experimental results showed that the frequency and duty cycle affect the output voltage. The output voltage could be set from 1 to 18 kV by changing the duty cycle. Therefore, the nanofibers could be synthesized by employing the developed high voltage power supply.


2003 ◽  
Vol 66-68 ◽  
pp. 615-620 ◽  
Author(s):  
D. Ganuza ◽  
J.M. Del Rı́o ◽  
I. Garcı́a ◽  
F. Garcı́a ◽  
P. Garcı́a de Madinabeitia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document