scholarly journals Foliar and root uptake of N deriving from simulated atmospheric N depositions in potted apple (Malus domestica) trees

Italus Hortus ◽  
2021 ◽  
Vol 28 (3) ◽  
pp. 13-24
Author(s):  
Damiano Zanotelli ◽  
Massimo Tagliavini ◽  
Marta Petrillo ◽  
Carlo Andreotti

A significant human-driven increment of the available reactive nitrogen (Nr) forms has occurred during the past century at the global scale, which in turn has increased the amount of Nr deposition. Grafted apple trees (Gala / M.9 strain T337) were used in a pot experiment conducted in semicontrolled conditions, where the 15N-labelling technique allowed to trace the fate of N from ammonium nitrate (15NH4 15NO3, isotopic enrichment: 10.3 atoms %) distributed at three increasing rates (N1, N2, N4, where N2 is the double of N1 and N4 is the double of N2) either to soil or to canopy (foliar application) to simulate atmospheric N depositions. At the end of the experiment, plants were destructively sampled, and N derived from depositions (Ndfd), total N, and biomass of above and belowground organs were determined. Uptake rates ranged from 21% to 57% and the Ndfd recovery was higher for soil than for foliar application. Foliar-supplied plants showed a higher Ndfd in leaves and shoots than soil-supplied ones, while the latter showed a higher Ndfd in roots than the former. Moreover, total N in trunk, shoot axes and leaves increased with the N rates up to the level N2, with no further increase in N4. Increasing tree N availability, regardless the supply mode, increased the shoot:root N content. The fact that the N uptake rate was rather stable at increasing N rates suggests that if N from atmospheric depositions becomes increasingly available at the canopy or soil level, it will actively contribute to apple tree nutrition and account for a significant fraction of the apple tree N needs.

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Anna Bonasia ◽  
Giulia Conversa ◽  
Corrado Lazzizera ◽  
Antonio Elia

Surpluses of N are associated with environmental and health problems. To optimise N use and reduce nitrate accumulation in leafy species like spinach, the application of biostimulants is suggested. An experiment in controlled conditions (growth chamber/soilless) evaluated baby-spinach responses to two protein hydrolysates (PHs) from plant (legume, Trainer®) and animal (meat, Isabion®) sources, combined with three N rates: 2 (N2, deficient), 8 (N8, sub-optimal), and 14 (N14, optimal) mM of N. Biometrical and morphological traits of shoots and roots as well as the physio-metabolic (gas exchange, N assimilation, and NUtE), physical, mineral, and antioxidant profiles of leaves were assessed. The legume-PH boosts growth and yield only at the highest N conditions, while there was no effect at lower N rates. The legume-PH modulates root architecture and chlorophylls has positive responses only at optimal N availability, such as an increase in N uptake, leaf expansion, and photosynthetic activity at the canopy level. The PHs do not improve NUtE, leaf colour, consistency, cations, or antioxidants. Neither do PHs have any effect on reducing nitrate accumulation. Legume-PH improves N assimilation only at optimal N availability, while meat-PH does not, reaching the highest nitrate value at the highest N rate (2677 mg kg−1 fw), even if this value is under the EC limits for fresh spinach.


2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


2008 ◽  
Vol 23 (03) ◽  
pp. 250-259 ◽  
Author(s):  
Derek H. Lynch ◽  
Zhiming Zheng ◽  
Bernie J. Zebarth ◽  
Ralph C. Martin

AbstractThe market for certified organic potatoes in Canada is growing rapidly, but the productivity and dynamics of soil N under commercial organic potato systems remain largely unknown. This study examined, at two sites in Atlantic Canada (Winslow, PEI, and Brookside, NS), the impacts of organic amendments on Shepody potato yield, quality and soil mineral nitrogen dynamics under organic management. Treatments included a commercial hog manure–sawdust compost (CP) and pelletized poultry manure (NW) applied at 300 and 600 kg total N ha−1, plus an un-amended control (CT). Wireworm damage reduced plant stands at Brookside in 2003 and those results are not presented. Relatively high tuber yields (~30 Mg ha−1) and crop N uptake (112 kg N ha−1) were achieved for un-amended soil in those site-years (Winslow 2003 and 2004) when soil moisture was non-limiting. Compost resulted in higher total yields than CT in one of three site-years. Apparent recovery of N from CP was negligible; therefore CP yield benefits were attributed to factors other than N availability. At Winslow, NW300, but not NW600, significantly increased total and marketable yields by an average of 5.8 and 7.0 Mg ha−1. Plant available N averaged 39 and 33% for NW300 and NW600, respectively. Soil (0–30 cm) NO3−-N at harvest was low (<25 kg N ha−1) for CT and CP, but increased substantially both in season and at harvest (61–141 kg N ha−1) when NW was applied. Most leaching losses of NO3−-N occur between seasons and excessive levels of residual soil NO3-N at harvest, as obtained for NW600, must be avoided. Given current premiums for certified organic potatoes, improving yields through application of amendments supplying moderate rates of N or organic matter appears warranted.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1440-1449 ◽  
Author(s):  
Carolyn F. Scagel ◽  
Guihong Bi ◽  
Leslie H. Fuchigami ◽  
Richard P. Regan

Growth, nitrogen (N) uptake, and N storage were assessed in transplanted 1-year-old rhododendron liners. Two evergreen cultivars, Rhododendron ‘P. J. Mezitt Compact’ (PJM) and R. ‘English Roseum’ (ER), and one deciduous cultivar, R. ‘Gibraltar’ (AZ), were transplanted into 1-gal. pots and given liquid fertilizer with (+N) or without (–N) N. Increased N availability increased growth after July (ER, PJM) or August (AZ), and resulted in three to five times more total biomass. Biomass continued to increase after stem elongation and leaf production ceased. Nitrogen uptake was correlated with growth of all plant structures on AZ, whereas N uptake was only correlated with stem and leaf growth on evergreen cultivars. The rate of N uptake was highest before July for AZ (1.9 mg·d−1) and in August and September for the evergreen cultivars (≈5 mg·d−1). Thirteen percent to 16% of total N uptake from between May and February occurred after N fertilization ceased at the beginning of September. Plants contained the most N in October (AZ), November (PJM), or December (ER). Biomass loss after November accounted for a loss of 14% to 48% of the maximum total plant N content. Nitrogen demand by roots and stems increased from May to February in all cultivars. The role of new and old leaves in N storage on evergreen cultivars varied with cultivar and time. Differences in N storage between the evergreen cultivars occurred primarily in their roots and leaves. Over the winter, PJM stored more N in its roots, whereas ER stored more N in its leaves. Changes in N concentrations and contents in different plant structures after November indicate that, during early winter, N stored in other structures moves to roots and old stems of PJM, old stems of ER, and roots and new and old stems of AZ. These results suggest that fertilizer application strategies for transplanted liners of these cultivars should include low N availability after transplanting followed by high N availability in mid to late summer. This type of strategy will not only improve N uptake efficiency from fertilizer, but also will minimize N loss from the containers. The results also demonstrated that N uptake in the autumn may play an important role in supplementing plant N reserves required for growth during the next season as well as for balancing N losses incited by leaf abscission, root turnover, and maintenance functions that occur over winter.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 794E-794
Author(s):  
Thomas M. Rathier

Two year-long, factorial experiments were conducted on Rhododendron catawbienses (cv. Roseum elegans) grown in 2.3-liter plastic pots. I) Annual N rates of 0, 0.4, 0.8, 1.6, and 3.2 g/pot were applied as NH4NO3 (SBL) or sulfur-coated urea (SR) to plants potted in a composted hardwood bark (CHB)/peatmoss (P)/sand (S) medium. Plant growth and quality was best at 0.8 g N/pot for SBL and 1.6 and 3.2 g N/pot for SR. II) Annual N rates of 0.8 (SBL) and 2.4 (SR) g/pot were chosen as optimum rates and applied to plants potted in the following media: pine bark (PB)/P/S; CHB/P/S; P/S; and PB/CHB/P/S. Plant growth and N uptake was best in PB/PS. Plant quality was best in P/S. NO3 in leachate did not differ among media, but was greater in SBL. Total N immobilized in media was greater in PB/CHB/P/S. N recovered from SR-treated pots as unused fertilizer did not differ among media. Total applied N recovered was 90% for SBL and 51% for SR.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 519-527 ◽  
Author(s):  
J. Potarzycki ◽  
W. Grzebisz

Actual yields of maize harvested by farmers are at level much below attainable yield potential of currently cultivated varieties. Among many growth factors zinc was recognized as one of main limiting factors of maize crop growth and yielding. This hypothesis has been verified within a three-year field study, where zinc fertilizer was applied to maize plants at the 5<sup>th</sup> leaf stage. Maize crop responded significantly to zinc foliar application in two of three years of study. The optimal rate of zinc foliar spray for achieving significant grain yield response was in the range from 1.0 to 1.5 kg Zn/ha. Grain yield increase was circa 18% (mean of three years) as compared to the treatment fertilized only with NPK. Plants fertilized with 1.0 kg Zn/ha significantly increased both total N uptake and grain yield. Yield forming effect of zinc fertilizer revealed via improvement of yield structure elements. The number of kernels per plant showed the highest response (+17.8% as compared to the NPK plot) and simultaneously the highest dependence on N uptake (<i>R</i><sup>2</sup> = 0.79). For this particular zinc treatment, however, the length of cob can also be applied as a component of yield structure significantly shaping the final grain yield.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 235-240 ◽  
Author(s):  
Bordoloi LJ ◽  
Singh AK ◽  
Manoj-Kumar ◽  
Patiram ◽  
S. Hazarika

Plant&rsquo;s nitrogen (N) requirement that is not fulfilled by available N in soil has to be supplied externally through chemical fertilizers. A reliable estimate of soil N-supplying capacity (NSC) is therefore essential for efficient fertilizer use. In this study involving a pot experiment with twenty acidic soils varying widely in properties, we evaluated six chemical indices of soil N-availability viz. organic carbon (C<sub>org</sub>), total N (N<sub>tot</sub>), acid and alkaline-KMnO<sub>4</sub> extractable-N, hot KCl extractable-N (KCl-N) and phosphate-borate buffer extractable-N (PBB-N), based on their strength of correlation with available-N values obtained through aerobic incubation (AI-N) and anaerobic incubation (ANI-N), and also with the dry matter yield (DMY), N percentage and plant (maize) N uptake (PNU). In general, the soils showed large variability in NSC as indicated by variability in PNU which ranged from 598 to 1026 mg/pot. Correlations of the N-availability indices with AI-N and ANI-N decreased in the order: PBB-N (r = 0.784** and 0.901**) &gt; KCl-N (r = 0.773** and 0.743**) &gt; acid KMnO<sub>4</sub>-N (r = 0.575** and 0.651**) &ge; C<sub>org</sub> (r = 0.591** and 0.531**) &ge; alkaline KMnO<sub>4</sub>-N (r = 0.394** and 0.548**) &gt; N<sub>tot</sub> (r = 0.297** and 0.273*). Of all the indices evaluated, PBB-N showed the best correlations with plant parameters as well (r = 0.790** and 0.793** for DMY and PNU, respectively). Based on the highest correlations of PBB-N with biological indices as well as plant responses, we propose PBB-N as an appropriate index of N-availability in the acidic soils of India and other regions with similar soils.


2020 ◽  
Author(s):  
Luca Da Ros ◽  
Maurizio Ventura ◽  
Mirco Rodeghiero ◽  
Damiano Gianelle ◽  
Giustino Tonon

&lt;p&gt;&lt;strong&gt;Abstract.&lt;/strong&gt; Forests ability to store carbon is strongly connected with the amount of nitrogen (N) that forest ecosystems can retain; N is indeed considered the most limiting nutrient for terrestrial ecosystem's net primary productivity. Since the industrial revolution, human activities have more than doubled the rate of N input into the nitrogen cycle and this could alleviate N limitation thus stimulating plant growth. However, it has been suggested that when N availability exceeds biotic demand and abiotic sinks, additional N can trigger a negative cascade effect: nutrient imbalance, reduced productivity, increased losses of N, eutrophication and acidification of soil and water, leading toward forest decline and net greenhouse gases emissions. The consequences of increased N deposition on forest depend in large share on the fate of N in the ecosystem, which can be simulated and quantified by a fertilization at a known isotopic signature. Nevertheless, most of the tracer experiments performed so far added the fertilizer directly to the forest floor, neglecting the potential role of N uptake by the forest canopy. In the Italian Alps, we are conducting an experiment where both types of N additions (above and below the canopy layer) are performed in two different forest stands, to understand if canopy fertilization better simulates ecological consequences of increased atmospheric N deposition. These field-scale manipulation experiments are willing to test two different hypotheses: i) the N uptake by trees in the above-canopy N addition experimental sites is higher than under-canopy N addition ii) forest growth rate varies with the type of treatment. To describe the fate of the applied N, stable isotope techniques have been adopted: the forest sites, fertilized with NH&lt;sub&gt;4&lt;/sub&gt;NO&lt;sub&gt;3&lt;/sub&gt; at a known isotopic signature, are sampled for all the ecosystem components (plant, soil and water) periodically to determine the total N content and its isotopic signature. The &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N values permit to calculate the recovery of N-fertilizer in tree tissues, soil and leaching-water, allowing us to understand how N allocation varies under these two fertilization strategies and how this affects C sequestration potential. Results regarding the short-term effects over the first 6 years of data collection will be presented.&lt;/p&gt;


1997 ◽  
Vol 77 (3) ◽  
pp. 345-350 ◽  
Author(s):  
Adrien N'Dayegamiye ◽  
Raynald Royer ◽  
Pierre Audesse

The real contribution of composts to N availability depends on their characteristics and maturity. A laboratory incubation experiment (140 d) was conducted parallel to a greenhouse study (330 d) in a split-split-plot design, with, respectively, two peat rates (0, 20 gkg−1 soil), five manure composts and four compost rates (0, 250, 500 and 750 gkg−1 soil). Compost N mineralization, orchardgrass (Dactylis Glomerata L.) yield and N uptake were measured. Total amount of mineralized N and yields and N uptake for six cuts of orchardgrass varied significantly with the type of composts and rate. Peat addition temporarily decreased compost N mineralization rate but significantly increased orchardgrass yields and N uptake as compared to peatless treatments. Mineralized N represented <3% of total N, whereas N uptake by orchardgrass represented 13–40% of total N among composts. This low mineralized N value compared to total N and total N uptake was due to a high maturity of the composts studied. This was shown by high humic acid: fulvic acid fraction ratios (3.1 to 4.8) and low nonhumic fraction:humic acid+fulvic acid ratios (0.10 to 0.12), as well as low C/N ratios, high bulk density, high ash content, pH, NO3-N and CEC values. Even if peat addition decreased mineralized N basically due to temporary N immobilization, its application significantly increased yields and N uptake probably by improving physical conditions in soil-manure compost mixtures. Peat addition to mature manure composts should be considered as an interesting alternative for horticultural plants sensitive to high NO3-N content from mature composts. Key word: Manure composts, peat, N mineralization, N availability, humification ratios or indexes, yields, orchardgrass


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2444
Author(s):  
Federica Carucci ◽  
Giuseppe Gatta ◽  
Anna Gagliardi ◽  
Pasquale De Vita ◽  
Simone Bregaglio ◽  
...  

Organic farming systems are often constrained by limited soil nitrogen (N) availability. Here we evaluated the effect of foliar organic N and sulphur (S), and selenium (Se) application on durum wheat, considering N uptake, utilization efficiency (NUtE), grain yield, and protein concentration as target variables. Field trials were conducted in 2018 and 2019 on two old (Cappelli and old Saragolla) and two modern (Marco Aurelio and Nadif) Italian durum wheat varieties. Four organic fertilization strategies were evaluated, i.e., the control (CTR, dry blood meal at sowing), the application of foliar N (CTR + N) and S (CTR + S), and their joint use (CTR + NS). Furthermore, a foliar application of sodium selenate was evaluated. Three factors—variety, fertilization strategies and selenium application—were arranged in a split-split-plot design and tested in two growing seasons. The modern variety Marco Aurelio led to the highest NUtE and grain yield in both seasons. S and N applications had a positive synergic effect, especially under drought conditions, on pre-anthesis N uptake, N translocation, NUtE, and grain yield. Se treatment improved post-anthesis N uptake and NUtE, leading to 17% yield increase in the old variety Cappelli, and to 13% and 14% yield increase in Marco Aurelio and Nadif, mainly attributed to NUtE increase. This study demonstrated that the synergistic effect of foliar applications could improve organic durum wheat yields in Mediterranean environments, especially on modern varieties.


Sign in / Sign up

Export Citation Format

Share Document