scholarly journals Understanding Human Impressions of Artificial Intelligence

2021 ◽  
Author(s):  
Kevin Robert McKee ◽  
Xuechunzi Bai ◽  
Susan Fiske

Artificial intelligence increasingly suffuses everyday life. However, people are frequently reluctant to interact with A.I. systems. This challenges both the deployment of beneficial A.I. technology and the development of deep learning systems that depend on humans for oversight, direction, and training. Previously neglected but fundamental, social-cognitive processes guide human interactions with A.I. systems. In five behavioral studies (N = 3,099), warmth and competence feature prominently in participants’ impressions of artificially intelligent systems. Judgments of warmth and competence systematically depend on human-A.I. interdependence. In particular, participants perceive systems that optimize interests aligned with human interests as warmer and systems that operate independently from human direction as more competent. Finally, a prisoner’s dilemma game shows that warmth and competence judgments predict participants’ willingness to cooperate with a deep learning system. These results demonstrate the generality of intent detection to interactions with technological actors. Researchers and developers should carefully consider the degree and alignment of interdependence between humans and new artificial intelligence systems.

Endoscopy ◽  
2020 ◽  
Author(s):  
Alanna Ebigbo ◽  
Robert Mendel ◽  
Tobias Rückert ◽  
Laurin Schuster ◽  
Andreas Probst ◽  
...  

Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.


Author(s):  
Mehreen Sirshar ◽  
Syeda Hafsa Ali ◽  
Haleema Sadia Baig

Over the last few decades there has been an exponential growth in IT, motivating IT professionals and scientists to explore new dimensions resulting in the advancement of artificial intelligence and its subcategories like computer vision, deep learning and augmented reality. AR is comparatively a new area which was initially explored for gaming but recently a lot of work has been done in education using AR. Most of this focuses on improving students understanding and motivation. Like any other project, the performance of an AR based project is determined by the customer satisfaction which is usually affected by the theory of triple constraints; cost, time and scope. many studies have shown that most of the projects are under development because they are unable to overcome these constraints and meet project objectives. We were unable to find any notable work done regarding project management for augmented reality systems and application. Therefore, in this paper, we propose a system for management of AR applications which mainly focuses on catering triple constraints to meet desired objectives. Each variable is further divided into subprocesses and by following these processes successful completion of the project can be achieved.


TECHNOLOGOS ◽  
2020 ◽  
pp. 40-55
Author(s):  
Alekseeva Ekaterina

The article is devoted to the urgent problem – the prospect of partial or complete substitution of teachers for artificial intelligence. With the progress of technologies related to the artificial intelligent systems development the reality of such substitution is estimated as increasing one. At the same time, even the potential substitution of human teachers for artificial intelligence and robotics raises zillion of questions which should be considered from different points of view: cognitive, social, technological, etc. The philosophical perspective provides a reflective integration of these points of view. The most prominent contemporary projects of using artificial intelligence in education have been revealed in the article. The types of intelligent systems used in education are systematized. It is shown that all of them have a different degree of anthropology. Primarily cognitive aspects of the problem of artificial intelligence in education have been considered in the article. The connection of ideas about the possibility of teachers’ substitution for the artificial systems with various approaches to understanding the key principles of education and training is investigated. At the same time, there is a socially critical approach showing that the substitution of teachers for the artificial intellectual systems is a component of cognitive capitalism. The author of the article proposes to reformulate the problem and consider the use of artificial intelligence in education not as a substitutional but as a supplementing technology. This means that artificial systems assume certain functions working in symbiosis with a human teacher and partly playing the role of a tutor. Using the actor-network theory and the ontology of assemblages, referring to the cyberand xenofeminist interpretation of the concept of "cyborg" the author shows that the teacher together with the artificial intelligence can form a human-machine system. In this case artificial intelligence shows emancipation potential but not alienating one.


2021 ◽  
pp. 26-34
Author(s):  
Yuqian Li ◽  
Weiguo Xu

AbstractArchitects usually design ideation and conception by hand-sketching. Sketching is a direct expression of the architect’s creativity. But 2D sketches are often vague, intentional and even ambiguous. In the research of sketch-based modeling, it is the most difficult part to make the computer to recognize the sketches. Because of the development of artificial intelligence, especially deep learning technology, Convolutional Neural Networks (CNNs) have shown obvious advantages in the field of extracting features and matching, and Generative Adversarial Neural Networks (GANs) have made great breakthroughs in the field of architectural generation which make the image-to-image translation become more and more popular. As the building images are gradually developed from the original sketches, in this research, we try to develop a system from the sketches to the images of buildings using CycleGAN algorithm. The experiment demonstrates that this method could achieve the mapping process from the sketches to images, and the results show that the sketches’ features could be recognised in the process. By the learning and training process of the sketches’ reconstruction, the features of the images are also mapped to the sketches, which strengthen the architectural relationship in the sketch, so that the original sketch can gradually approach the building images, and then it is possible to achieve the sketch-based modeling technology.


1986 ◽  
Vol 9 (4) ◽  
pp. 639-651 ◽  
Author(s):  
Roger C. Schank ◽  
Gregg C. Collins ◽  
Lawrence E. Hunter

AbstractThe inductive category formation framework, an influential set of theories of learning in psychology and artificial intelligence, is deeply flawed. In this framework a set of necessary and sufficient features is taken to define a category. Such definitions are not functionally justified, are not used by people, and are not inducible by a learning system. Inductive theories depend on having access to all and only relevant features, which is not only impossible but begs a key question in learning. The crucial roles of other cognitive processes (such as explanation and credit assignment) are ignored or oversimplified. Learning necessarily involves pragmatic considerations that can only be handled by complex cognitive processes.We provide an alternative framework for learning according to which category definitions must be based on category function. The learning system invokes other cognitive processes to accomplish difficult tasks, makes inferences, analyses and decides among potential features, and specifies how and when categories are to be generated and modified. We also examine the methodological underpinnings of the two approaches and compare their motivations.


2018 ◽  
Vol 16 (4) ◽  
pp. 306-327 ◽  
Author(s):  
Imdat As ◽  
Siddharth Pal ◽  
Prithwish Basu

Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph-based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-2
Author(s):  
Julkar Nine

Vision Based systems have become an integral part when it comes to autonomous driving. The autonomous industry has seen a made large progress in the perception of environment as a result of the improvements done towards vision based systems. As the industry moves up the ladder of automation, safety features are coming more and more into the focus. Different safety measurements have to be taken into consideration based on different driving situations. One of the major concerns of the highest level of autonomy is to obtain the ability of understanding both internal and external situations. Most of the research made on vision based systems are focused on image processing and artificial intelligence systems like machine learning and deep learning. Due to the current generation of technology being the generation of “Connected World”, there is no lack of data any more. As a result of the introduction of internet of things, most of these connected devices are able to share and transfer data. Vision based techniques are techniques that are hugely depended on these vision based data.


2021 ◽  
Vol 8 ◽  
Author(s):  
Raffaele Nuzzi ◽  
Giacomo Boscia ◽  
Paola Marolo ◽  
Federico Ricardi

Artificial intelligence (AI) is a subset of computer science dealing with the development and training of algorithms that try to replicate human intelligence. We report a clinical overview of the basic principles of AI that are fundamental to appreciating its application to ophthalmology practice. Here, we review the most common eye diseases, focusing on some of the potential challenges and limitations emerging with the development and application of this new technology into ophthalmology.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4727
Author(s):  
Maysam Abbod ◽  
Jiann-Shing Shieh

Recently, significant developments have been achieved in the field of artificial intelligence, in particular the introduction of deep learning technology that has improved the learning and prediction accuracy to unpresented levels, especially when dealing with big data and high-resolution images. Significant developments have occurred in the area of medical signal processing, measurement techniques, and health monitoring, such as vital biological signs for biomedical systems and noise and vibration of mechanical systems, which are carried out by instruments that generate large data sets. These big data sets, ultimately driven by high population growth, would require Artificial Intelligence techniques to analyse and model. In this Special Issue, papers are presented on the latest signal processing and deep learning techniques used for health monitoring of biomedical and mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document