scholarly journals Physiological and Pharmacological Studies on Cervical Motor Neurons in Slices Prepared from Neonatal and Aged Mice

2021 ◽  
pp. 1-5
Author(s):  
David O. Carpenter ◽  
N Hori ◽  
Z Xu ◽  
N Akaike ◽  
Y Tan ◽  
...  

The effects of age on the physiological properties of cervical motor neurons were examined in slices made from an excised spinal cord graft of ICR mice from the second day after birth to age 350 days. The membrane potential of post-natal day 2 (PD2) to PD350 was about -65 mV and did not change greatly with age, although it was slightly higher at PD2. However, there were significant changes in membrane resistance, which increased with age from about 15 to 30 MΩ. The depolarization induced by the excitatory amino acid agonists, kainic acid, NMDA and AMPA, decreased with aging in spite of the increase in membrane resistance. The motor neurons of the aged mice showed delayed recovery from excitation caused by excitatory amino acid agonists. By injecting Lucifer yellow CH into motor neurons, it was observed that the dendrite trees become thin, and some of the dendrite branches were missing in older animals.

1999 ◽  
Vol 276 (4) ◽  
pp. R1141-R1148 ◽  
Author(s):  
Miwako Shihara ◽  
Nobuaki Hori ◽  
Yoshitaka Hirooka ◽  
Kenichi Eshima ◽  
Norio Akaike ◽  
...  

The pharmacological and physiological properties of excitatory amino acid and ACh systems in the nucleus of the solitary tract (NTS) were studied in slices of rat brain stem by extracellular and intracellular recordings from neurons activated by solitary tract (ST) stimulation. These neurons were characterized as having several long dendrites with multiple varicosities. Synaptic activation of the medial NTS (mNTS) neurons by ST stimulation was mediated by non- N-methyl-d-aspartate (NMDA) glutamate (Glu) receptors, because the excitation was blocked by 6-cyano-7-nitro-quinoxaline-2,3-dione but not by NMDA, nicotinic, or muscarinic antagonists. Identified mNTS neurons were excited by iontophoresis of both Glu and ACh. The most sensitive region of the cell was on the dendrites ∼100 μm from the cell body for both putative neurotransmitters. Nicotinic and/or muscarinic excitatory ACh responses were detected on the mNTS neurons. Our observations suggest that both types of ACh receptors may contribute to the attenuation of the baroreceptor reflex, but the functional correlation of this receptor profile remains to be determined.


1993 ◽  
Vol 70 (3) ◽  
pp. 1221-1230 ◽  
Author(s):  
L. E. Trudeau ◽  
V. F. Castellucci

1. Although the gill and siphon withdrawal reflex of Aplysia has been used as a model system to study learning-associated changes in synaptic transmission, the identity of the neurotransmitter released by the sensory neurons and excitatory interneurons of the network mediating this behavior is still unknown. The identification of the putative neurotransmitter of these neurons should facilitate further studies of synaptic plasticity in Aplysia. 2. We report that sensory-motor transmission within this circuit is mediated through the activation of an excitatory amino acid receptor that is blocked by the non-N-methyl-D-aspartate excitatory amino acid receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 1-(4-chlorobenzoyl)-piperazine-2,3-dicarboxylic acid (CBPD). Compound postsynaptic potentials evoked in motor neurons by electrical stimulation of the siphon nerve were blocked by 92% with CNQX (75 microM) and 89% with CBPD (75 microM). 3. Simultaneous intracellular recordings were obtained from sensory neurons, excitatory interneurons, and motor neurons. Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motor neurons by an action potential in a sensory neuron were blocked by 86% with CNQX (75 microM) and 71% with CBPD (75 microM). The two antagonists also blocked monosynaptic interneuronal EPSPs onto motor neurons by 65% and 67%, respectively. 4. Potential agonists of the synaptic receptors were puff-applied in the intact abdominal ganglion. Homocysteic acid (HCA) was found to mimic the action of the synaptically released transmitter because it strongly excites motor neurons. This effect was blocked by CNQX. Kainate and domoic acid were also effective agonists. 5. The actions of L- and D-glutamate as well as quisqualate were found to be mainly hyperpolarizing, whereas aspartate and (+/-)-amino-3-hydroxy-5-methylisoxazole-4-propionic acid had no effect. 6. Several reasons may be proposed to explain the inability of puff-applied glutamate to excite effectively the postsynaptic neurons in the intact ganglion. It is possible nonetheless that other endogenous amino acids such as HCA act as neurotransmitters at these synapses.


1986 ◽  
Vol 103 (1) ◽  
pp. 135-144 ◽  
Author(s):  
D C Spray ◽  
R D Ginzberg ◽  
E A Morales ◽  
Z Gatmaitan ◽  
I M Arias

Physiological properties of isolated pairs of rat hepatocytes were examined within 5 h after dissociation. These cells become round when separated, but cell pairs still display membrane specializations. Most notably, canaliculi are often present at appositional membranes which are flanked by abundant gap and tight junctions. These cell pairs are strongly dye-coupled; Lucifer Yellow CH injected into one cell rapidly diffuses to the other. Pairs of hepatocytes are closely coupled electrically. Conductance of the junctional membrane is not voltage sensitive: voltage clamp studies demonstrate that gj is constant in response to long (5 s) transjunctional voltage steps of either polarity (to greater than +/- 40 mV from rest). Junctional conductance (gj) between hepatocyte pairs is reduced by exposure to octanol (0.1 mM) and by intracellular acidification. Normal intracellular pH (pHi), measured with a liquid ion exchange microelectrode, was generally 7.1-7.4, and superfusion with saline equilibrated with 100% CO2 reduced pHi to 6.0-6.5. In the pHi range 7.5-6.6, gj was constant. Below pH 6.6, gj steeply decreased and at 6.1 coupling was undetectable. pHi recovered when cells were rinsed with normal saline; in most cases gj recovered in parallel so that gj values were similar for pHs obtained during acidification or recovery. The low apparent pK and very steep pHi-gj relation of the liver gap junction contrast with higher pKs and more gradually rising curves in other tissues. If H+ ions act directly on the junctional molecules, the channels that are presumably homologous in different tissues must differ with respect to reactive sites or their environment.


2021 ◽  
pp. 1-5
Author(s):  
David O. Carpenter ◽  
N Hori ◽  
Y Tan ◽  
Z Xu ◽  
N Akaike ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a disease where upper and lower motor neurons die, and it is often associated with mutations of superoxide dismutase 1 (SOD1). We have used mouse models to compare physiologic and morphologic characteristics of cervical motor neurons in wild-type and mutant animals. Slices of the cervical spinal cord were prepared from old wild-type and mutant G93A and G85R mice, and intracellular recordings of membrane potential, resistance and responses to application of excitatory neurotransmitters were studied. Some motor neurons were injected with Lucifer Yellow for morphological analysis. There were no significant differences between membrane potential in the SOD1 mutants and aged wild-type mice, but membrane resistance was somewhat higher in the mutant motor neurons. Dendrites of the mutant motor neurons were not responsive to ionophoretic application of excitatory amino acids, although the cell body responded strongly. In Lucifer-filled cells, the dendrites were found to disappear. Mutant motor neurons were sometimes spontaneously active. Responses of mutant motor neurons to perfused glutamate with varying calcium concentrations in the Ringer’s solution were different from those of the wild-type cells.


2002 ◽  
Vol 283 (2) ◽  
pp. C569-C578 ◽  
Author(s):  
Alexander A. Mongin ◽  
Harold K. Kimelberg

Volume-dependent ATP release and subsequent activation of purinergic P2Y receptors have been implicated as an autocrine mechanism triggering activation of volume-regulated anion channels (VRACs) in hepatoma cells. In the brain ATP is released by both neurons and astrocytes and participates in intercellular communication. We explored whether ATP triggers or modulates the release of excitatory amino acid (EAAs) via VRACs in astrocytes in primary culture. Under basal conditions exogenous ATP (10 μM) activated a small EAA release in 70–80% of the cultures tested. In both moderately (5% reduction of medium osmolarity) and substantially (35% reduction of medium osmolarity) swollen astrocytes, exogenous ATP greatly potentiated EAA release. The effects of ATP were mimicked by P2Y agonists and eliminated by P2Y antagonists or the ATP scavenger apyrase. In contrast, the same pharmacological maneuvers did not inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cells was eliminated by a 5–10% increase in medium osmolarity or by anion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but acts synergistically with cell swelling. Moderate cell swelling and ATP may serve as two cooperative signals in bidirectional neuron-astrocyte communication in vivo.


1999 ◽  
Vol 81 (5) ◽  
pp. 2037-2045 ◽  
Author(s):  
James T. Buchanan

Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. To test the necessity of spinal commissural interneurons in the generation of the swim rhythm in lamprey, longitudinal midline cuts of the isolated spinal cord preparation were made. Fictive swimming was then induced by bath perfusion with an excitatory amino acid while recording ventral root activity. When the spinal cord preparation was cut completely along the midline into two lateral hemicords, the rhythmic activity of fictive swimming was lost, usually replaced with continuous ventral root spiking. The loss of the fictive swim rhythm was not due to nonspecific damage produced by the cut because rhythmic activity was present in split regions of spinal cord when the split region was still attached to intact cord. The quality of this persistent rhythmic activity, quantified with an autocorrelation method, declined with the distance of the split spinal segment from the remaining intact spinal cord. The deterioration of the rhythm was characterized by a lengthening of burst durations and a shortening of the interburst silent phases. This pattern of deterioration suggests a loss of rhythmic inhibitory inputs. The same pattern of rhythm deterioration was seen in preparations with the rostral end of the spinal cord cut compared with those with the caudal end cut. The results of this study indicate that commissural interneurons are necessary for the generation of the swimming rhythm in the lamprey spinal cord, and the characteristic loss of the silent interburst phases of the swimming rhythm is consistent with a loss of inhibitory commissural interneurons. The results also suggest that both descending and ascending commissural interneurons are important in the generation of the swimming rhythm. The swim rhythm that persists in the split cord while still attached to an intact portion of spinal cord is thus imposed by interneurons projecting from the intact region of cord into the split region. These projections are functionally short because rhythmic activity was lost within approximately five spinal segments from the intact region of spinal cord.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miwa Nahata ◽  
Sachiko Mogami ◽  
Hitomi Sekine ◽  
Seiichi Iizuka ◽  
Naoto Okubo ◽  
...  

AbstractChronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.


Sign in / Sign up

Export Citation Format

Share Document