scholarly journals Archaeosomes and Gas Vesicles as Tools for Vaccine Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Adamiak ◽  
Krzysztof T. Krawczyk ◽  
Camille Locht ◽  
Magdalena Kowalewicz-Kulbat

Archaea are prokaryotic organisms that were classified as a new domain in 1990. Archaeal cellular components and metabolites have found various applications in the pharmaceutical industry. Some archaeal lipids can be used to produce archaeosomes, a new family of liposomes that exhibit high stability to temperatures, pH and oxidative conditions. Additionally, archaeosomes can be efficient antigen carriers and adjuvants promoting humoral and cellular immune responses. Some archaea produce gas vesicles, which are nanoparticles released by the archaea that increase the buoyancy of the cells and facilitate an upward flotation in water columns. Purified gas vesicles display a great potential for bioengineering, due to their high stability, immunostimulatory properties and uptake across cell membranes. Both archaeosomes and archaeal gas vesicles are attractive tools for the development of novel drug and vaccine carriers to control various diseases. In this review we discuss the current knowledge on production, preparation methods and potential applications of archaeosomes and gas vesicles as carriers for vaccines. We give an overview of the traditional structures of these carriers and their modifications. A comparative analysis of both vaccine delivery systems, including their advantages and limitations of their use, is provided. Gas vesicle- and archaeosome-based vaccines may be powerful next-generation tools for the prevention and treatment of a wide variety of infectious and non-infectious diseases.

2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


2021 ◽  
Vol 22 (11) ◽  
pp. 5781
Author(s):  
Janarthanan Supramaniam ◽  
Darren Yi Sern Low ◽  
See Kiat Wong ◽  
Loh Teng Hern Tan ◽  
Bey Fen Leo ◽  
...  

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8–10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jerry Fredy Gomez Cahuata ◽  
Yessica Estefany Rosas-Quina ◽  
Erika Pachari Vera

Purpose The purpose of this paper is to divulge the current knowledge about the nutritional and functional characteristics of Cañihua (Chenopodium pallidicaule Aellen), in addition to its potential applications in the food industry since research studies related to it are still limited compared to other cereals of greater diffusion. Design/methodology/approach The scientific information was collected from Web of Science, Scopus and Google Scholar databases, using keywords such as nutrition value of Chenopodium pallidicaule, amaranth and pseudocereals. Consistent information was selected according to its relevance, year of publication and accuracy with the topic. A total of 49 research papers were selected. Findings Cañihua is a grain with high nutritional potential, considered a superfood because it has a high protein quality, a balanced composition of essential amino acids and unsaturated fatty acids, with a high concentration of linoleic and oleic acid. Besides, it has a good level of bioactive compounds with high antioxidant capacity. However, its production and consumption are limited outside its area of origin, although its cultivation is possible under harsh conditions. Originality/value This paper, through a systematic bibliographic review, highlights the potential of cañihua to be considered in the development of food products with high nutritional and functional value. The information compiled will help researchers and professionals become aware of the importance of this grain and join forces in its processing and enhancement of its attributes.


2015 ◽  
Vol 68 (10) ◽  
pp. 1513 ◽  
Author(s):  
Miaona Feng ◽  
Guoying Zhao ◽  
Hongling Gao ◽  
Suojiang Zhang

Novel tetracarboxyl-functionalized 2,2′-biimidazolium-based ionic liquids (ILs) with different anions were synthesized in two steps from readily available and sustainable starting materials including ammonium acetate, glyoxal, and halogenated propionic acid. The functionalized IL exhibited higher catalytic activity towards the cycloaddition of CO2 to terminal epoxides. With propylene oxide as a substrate, the optimum yield of propylene carbonate reached 82.7 % at an initial CO2 pressure of 2.0 MPa for 4 h at 140°C. Moreover, the functionalized IL catalyst displayed a high stability and can be reused for at least five cycles without obvious loss of catalytic activity. The results provide a simple and economical way to synthesize multi-functionalized imidazolium-based ILs with versatile potential applications.


2009 ◽  
Vol 10 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Christoph Georg Baums ◽  
Peter Valentin-Weigand

AbstractStreptococcus suisis an invasive porcine pathogen associated with meningitis, arthritis, bronchopneumonia and other diseases. The pathogen constitutes a major health problem in the swine industry worldwide. Furthermore,S. suisis an important zoonotic agent causing meningitis and other diseases in humans exposed to pigs or pork. Current knowledge on pathogenesis is limited, despite the enormous amount of data generated by ‘omics’ research. Accordingly, immunprophylaxis (in pigs) is hampered by lack of a cross-protective vaccine against virulent strains of this diverse species. This review focuses on bacterial factors, both surface-associated and secreted ones, which are considered to contribute toS. suisinteraction(s) with host factors and cells. Factors are presented with respect to (i) their identification and features, (ii) their distribution amongS. suisand (iii) their significance for virulence, immune response and vaccination. This review also shows the enormous progress made in research onS. suisover the last few years, and it emphasizes the numerous challenging questions remaining to be answered in the future.


2011 ◽  
Vol 79 (4) ◽  
pp. 1671-1679 ◽  
Author(s):  
Hui Wang ◽  
Adrienne W. Paton ◽  
Shaun R. McColl ◽  
James C. Paton

ABSTRACTSubtilase cytotoxin (SubAB) is the prototype of a new family of AB5cytotoxins produced by Shiga-toxigenicEscherichia coli. Its cytotoxicity is due to its capacity to enter cells and specifically cleave the essential endoplasmic reticulum chaperone BiP. Previous studies have shown that intraperitoneal injection of mice with purified SubAB causes a pathology that overlaps with that seen in human cases of hemolytic-uremic syndrome, as well as dramatic splenic atrophy, suggesting that leukocytes are targeted. Here we investigated SubAB-induced leukocyte changes in the peritoneal cavity, blood, and spleen. After intraperitoneal injection, SubAB bound peritoneal leukocytes (including T and B lymphocytes, neutrophils, and macrophages). SubAB elicited marked leukocytosis, which peaked at 24 h, and increased neutrophil activation in the blood and peritoneal cavity. It also induced a marked redistribution of leukocytes among the three compartments: increases in leukocyte subpopulations in the blood and peritoneal cavity coincided with a significant decline in splenic cells. SubAB treatment also elicited significant increases in the apoptosis rates of CD4+T cells, B lymphocytes, and macrophages. These findings indicate that apart from direct cytotoxic effects, SubAB interacts with cellular components of both the innate and the adaptive arm of the immune system, with potential consequences for disease pathogenesis.


2016 ◽  
Vol 36 (4) ◽  
pp. 329-362 ◽  
Author(s):  
Nurul F. Himma ◽  
Sofiatun Anisah ◽  
Nicholaus Prasetya ◽  
I Gede Wenten

Abstract Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.


2018 ◽  
Vol 25 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Weifeng Chen ◽  
Hu Weimin ◽  
Dejiang Li ◽  
Shaona Chen ◽  
Zhongxu Dai

AbstractGraphene (graphene) is a new type of two-dimensional inorganic nanomaterial developed in recent years. It can be used as an ideal inorganic nanofiller for the preparation of polymer nanocomposites because of its high mechanical strength, excellent electrical conductivity and plentiful availability (from graphite). In this review, the preparation methods of graphene/polymer nanocomposites, including solution blending, melt blending and in situ polymerization, are introduced in order to study the relationship between these methods and the final characteristics and properties. Each method has an influence on the final characteristics and properties of the nanocomposites. The advantages and disadvantages of these methods are discussed. In addition, a variety of nanocomposites with different properties, such as mechanical properties, electronic conductivity, thermal conductivity and thermal properties, are summarized comprehensively. The potential applications of these nanocomposites in conductive materials, electromagnetic shielding materials, photocatalytic materials and so on, are briefly presented. This review demonstrates that polymer/graphene nanocomposites exhibit superior comprehensive performance and will be applied in the fields of new materials and novel devices. Future research directions of the nanocomposites are also presented.


Sign in / Sign up

Export Citation Format

Share Document