scholarly journals Optimal Control for Cleaner Hybrid Vehicles: A Backward Approach

2022 ◽  
Vol 12 (2) ◽  
pp. 578
Author(s):  
Bruno Jeanneret ◽  
Alice Guille Des Buttes ◽  
Alan Keromnes ◽  
Serge Pélissier ◽  
Luis Le Moyne

This work presents an application of the optimal control theory to find trade offs between fuel consumption and pollutant emissions (CO, HC, NOx) of sustaining hybrid vehicles. Both cold start and normal operations are considered. The problem formulation includes two state variables: battery state of energy and catalyst temperature; and three control variables: torque repartition between engine and motor, spark advance, and equivalence ratio. Optimal results were obtained by delaying the first engine crank after the urban part of the mission. The results show that a quick catalyst light off is performed. Once the catalyst is primed, special control parameters values are adopted to operate the engine.

1983 ◽  
Vol 105 (3) ◽  
pp. 576-584 ◽  
Author(s):  
M. Chew ◽  
F. Freudenstein ◽  
R. W. Longman

The synthesis of the parameters governing the dynamic response of high-speed cam-follower systems ideally involves an integrated approach capable of carrying out the tradeoffs necessary to achieve optimum dynamic response in the design stage. These trade-offs involve a balance between the system characteristics at the output and at the cam-follower interface. In this investigation optimal-control theory has been demonstrated to be a useful tool in developing such a tradeoff. Part 1 describes the development of an optimization criterion while Part 2 describes the application of optimal-control theory to the evaluation of system parameters satisfying the optimization criterion.


Author(s):  
Thomas J. Boehme ◽  
Markus Schori ◽  
Benjamin Frank ◽  
Matthias Schultalbers ◽  
Wolfgang Drewelow

1964 ◽  
Vol 86 (1) ◽  
pp. 51-60 ◽  
Author(s):  
R. E. Kalman

The purpose of this paper is to formulate, study, and (in certain cases) resolve the Inverse Problem of Optimal Control Theory, which is the following: Given a control law, find all performance indices for which this control law is optimal. Under the assumptions of (a) linear constant plant, (b) linear constant control law, (c) measurable state variables, (d) quadratic loss functions with constant coefficients, (e) single control variable, we give a complete analysis of this problem and obtain various explicit conditions for the optimality of a given control law. An interesting feature of the analysis is the central role of frequency-domain concepts, which have been ignored in optimal control theory until very recently. The discussion is presented in rigorous mathematical form. The central conclusion is the following (Theorem 6): A stable control law is optimal if and only if the absolute value of the corresponding return difference is at least equal to one at all frequencies. This provides a beautifully simple connecting link between modern control theory and the classical point of view which regards feedback as a means of reducing component variations.


2020 ◽  
Vol 125 (1284) ◽  
pp. 341-364
Author(s):  
A. Khalil ◽  
N. Fezans

AbstractTurbulence and gusts cause variations in the aerodynamic forces and moments applied to the structure of aircraft, resulting in passenger discomfort and dynamic loads on the structure that it must be designed to support. By designing Gust Load Alleviation (GLA) systems, two objectives can be achieved: first, realizing higher passenger comfort; and second, reducing the dynamic structural loads, which allows the design of lighter structures. In this paper, a methodology for designing combined feedback/feedforward GLA systems is proposed. The methodology relies on the availability of a wind profile ahead of the aircraft measured by a Doppler LIDAR sensor, and is based on $H_{\infty}$-optimal control techniques and a discrete-time preview-control problem formulation. Moreover, to allow design trade-offs between those two objectives (to achieve design flexibility) as well as to allow specification of robustness criteria, a variant of the problem using multi-channel $H_{\infty}$-optimal control techniques is introduced. The methodology developed in this paper is intended to be applied to large aircraft, e.g. transport aircraft or business jets. The simulation results show the effectiveness of the proposed design methodology in accounting for the measured wind profile to achieve the two mentioned objectives, while ensuring both design flexibility and controller robustness and optimality.


2013 ◽  
Vol 46 (23) ◽  
pp. 475-480 ◽  
Author(s):  
Markus Schori ◽  
Thomas J. Boehme ◽  
Benjamin Frank ◽  
Matthias Schultalbers

2010 ◽  
Vol 29-32 ◽  
pp. 2503-2508 ◽  
Author(s):  
Pei Hong Sun ◽  
Lei Tang ◽  
Li Ying Tang

Countering the inventory management problem of manufacturing enterprise, according to the optimal control theory, considering the numbers of products as control variables and the stocks as the state variables, this essay establishes systemic real-time dynamic model, gives the objective function, and makes use of dynamic programming method to solve the optimal control and obtains the optimal inventory, which provides a theoretical foundation for the production and inventory management of manufacturing enterprise.


Author(s):  
J-J Lee ◽  
C-C Cho

A method is proposed to improve the performance of the conventional Geneva mechanism. Rather than driving the input crank at a uniform speed, this method uses optimal control theory to synthesize the speed of the crank. In this paper, design criteria are first developed based upon the elimination of the impact loading at the beginning and end of the motion cycle. In addition, three approaches to program the crank speed are introduced. In the first approach, the crank speed is designed to be optimal so as to minimize the output acceleration. In the second approach, the crank speed is determined by minimizing the input motor torque. The third approach uses the degree of wear between the crank pin and wheel slot as the index to optimize the crank speed. All design objectives are formulated as a parameterized optimization problem and solved via an efficient numerical method. Furthermore, trade-offs among the desired characteristics are taken into account by formulating the problem as a multiobjective optimization problem. Two examples are given to illustrate the design procedure.


Sign in / Sign up

Export Citation Format

Share Document