scholarly journals Coatings Functionalization via Laser versus Other Deposition Techniques for Medical Applications: A Comparative Review

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Maria Badiceanu ◽  
Sinziana Anghel ◽  
Natalia Mihailescu ◽  
Anita Ioana Visan ◽  
Cristian N. Mihailescu ◽  
...  

The development of new biological devices in response to market demands requires continuous efforts for the improvement of products’ functionalization based upon expansion of the materials used and their fabrication techniques. One viable solution consists of a functionalization substrate covered by layers via an appropriate deposition technique. Laser techniques ensure an enhanced coating’s adherence to the substrate and improved biological characteristics, not compromising the mechanical properties of the functionalized medical device. This is a review of the main laser techniques involved. We mainly refer to pulse laser deposition, matrix-assisted, and laser simple and double writing versus some other well-known deposition methods as magnetron sputtering, 3D bioprinting, inkjet printing, extrusion, solenoid, fuse-deposition modeling, plasma spray (PS), and dip coating. All these techniques can be extended to functionalize surface fabrication to change local morphology, chemistry, and crystal structure, which affect the biomaterial behavior following the chosen application. Surface functionalization laser techniques are strictly controlled within a confined area to deliver a large amount of energy concisely. The laser deposit performances are presented compared to reported data obtained by other techniques.

2021 ◽  
pp. 1-16
Author(s):  
J. J. Ariel Leong ◽  
S. C. Koay ◽  
M. Y. Chan ◽  
H. L. Choo ◽  
K. Y. Tshai ◽  
...  

Author(s):  
Joshua Eisenstat ◽  
Dennis Gotthardt ◽  
Rebecca Assor ◽  
Liam Dempsey ◽  
Muhammad Hasibul Hasan

ABSTRACT Nanomaterials observe specialized properties relative to gross materials. Due to their small size, specialized nanomaterial properties include decreased reactivity, an increased surface area to volume ratio, heightened structural properties, and in some cases, antimicrobial and antibacterial effects. Current researchers are looking to use nanoparticle/nanomaterial properties to solve prevalent dental issues that cannot be addressed with traditionally used materials. This paper will serve as an extensive review of current nanomaterial applications as they pertain to dental fillings and dental filling processes. Comparative assessments of traditional materials used in dental fillings will be made as well as comparative assessments of currently used nanomaterials in dental fillings. Material comparisons are based on criteria pertaining to biocompatibility, toxicity, reactivity, cost, and antimicrobial/antibacterial properties. When comparing the three most currently used dental filling nanomaterials – Carbon-Based Nanotubes, Silica Nanoparticles and Silver-Coated Nanoparticles – it was observed that Silica Nanoparticles demonstrated the greatest material advantage and should be recommended for continued use. Issues regarding future developmental dental filling applications of graphene nanoparticles, organic nanoparticles and gold nanoparticles will also be discussed. Keywords: Nanomaterials, antibacterial, dental fillings, silica resins, biocompatibility.  


2012 ◽  
Vol 77 ◽  
pp. 65-70 ◽  
Author(s):  
Giusy Matzeu ◽  
Claudio Zuliani ◽  
Dermot Diamond

Solid-contact Ion Selective Electrodes (SC-ISEs) for the detection of lead are prepared on screen printed substrates in order to have low-cost and disposable sensors which may be useful in long-term environmental monitoring. It is shown that the materials used as solid contact layer, the deposition techniques and their thickness affect greatly the performances of the sensors. Poly(3-octylthiophene-2,5-diyl) (POT) and poly-3,4-ethylenedioxithiophene (PEDOT) are employed in this investigation. A trend showing an optimum is found for sensors prepared with POT as the batch reproducibility depends on the amount drop-cast, i.e., thickness. In case of PEDOT which is grown amperometrically the trend is more complex but an optimum for the batch reproducibility is again found depending on the current density. In the latter case, the film thickness and the overoxidation degree of the polymer probably concur in determining a more complex relationship.


2015 ◽  
Vol 20 (12) ◽  
pp. 121311 ◽  
Author(s):  
Erbao Dong ◽  
Zuhua Zhao ◽  
Minjie Wang ◽  
Yanjun Xie ◽  
Shidi Li ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1447
Author(s):  
Madalina Simona Baltatu ◽  
Andrei Victor Sandu ◽  
Marcin Nabialek ◽  
Petrica Vizureanu ◽  
Gabriela Ciobanu

Over the last decade, researchers have been concerned with improving metallic biomaterials with proper and suitable properties for the human body. Ti-based alloys are widely used in the medical field for their good mechanical properties, corrosion resistance and biocompatibility. The TiMoZrTa system (TMZT) evidenced adequate mechanical properties, was closer to the human bone, and had a good biocompatibility. In order to highlight the osseointegration of the implants, a layer of hydroxyapatite (HA) was deposited using a biomimetic method, which simulates the natural growth of the bone. The coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro indentation tests and contact angle. The data obtained show that the layer deposited on TiMoZrTa (TMZT) support is hydroxyapatite. Modifying the surface of titanium alloys represents a viable solution for increasing the osseointegration of materials used as implants. The studied coatings demonstrate a positive potential for use as dental and orthopedic implants.


2018 ◽  
Vol 178 ◽  
pp. 02008
Author(s):  
Dragoş-Florin Chitariu ◽  
Adriana Munteanu

Fixtures are used for orientation, positioning and tightening of the workpiece during machining, control and assembly. The main fixture requirements are: orientation, positioning and tightening precision in accordance with the machining requirements. The materials used for fixture components, especially, supports and clamping mechanism are, usually, alloy steel with HRC hardness up to 55-60 HRC. These components are machined to high level of precision thus assuring the overall precision of the fixture. In order to achieve high stiffness and a good dampening capacity the fixture become, usually, very heavy. In the case of manually operated fixtures light weight is an advantage; also there are operations such as inspection, assembly where the operating forces are low. In this case lightweight materials can be used for fixture construction. In this paper the FDM (Fused Deposition Modeling) 3D printing technology is used. Support buttons and v-block fixture components were selected and 3D printed. The effect of printing orientation of active surfaces of support was analysed. The dimensional accuracy and surface roughness on the active surface were measured. Experimental results indicate that surface roughness is dependent on the orientation of the printed workpiece.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6879
Author(s):  
Tangirala Venkata Krishna Karthik ◽  
María de la Luz Olvera ◽  
Arturo Maldonado ◽  
Rajesh Roshan Biswal ◽  
Heberto Gómez-Pozos

Undoped and nickel-doped zinc oxide thin films were deposited on sodalime glass substrates by utilizing dip coating and ultrasonic spray pyrolysis deposition techniques. In both cases zinc acetate and nickel acetylacetonate were used as zinc precursor and nickel dopant source, respectively. XRD analysis confirms the ZnO wurtzite structure with (002) as the preferential orientation.SEM studies show the formation of two types of morphologies, primarily a porous spherical grains with a grain size distribution from 40 to 150 nm and another, rose-like structures with size distribution from 30 to 200 nm, based on different deposition techniques utilized. The elemental depth profiles across the films were investigated by the secondary-ion mass spectrometry (SIMS). Different gas sensing responses of all ZnO films were obtained for both propane and carbon monoxide gases, at different gas concentrations and operating temperatures. The highest sensing response (~6) for undoped ZnO films was obtained for films deposited by ultrasonic spray pyrolysis (USP). Nevertheless, the highest sensing response (~4 × 104) for doped ZnO films was obtained for films deposited by dip coating method. The behavior of sensing responses is explained in detail based on the morphological properties and the amount of Ni impurities incorporated into the crystal lattice.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Blaža Stojanović ◽  
Aleksandar Vencl

Wear of a friction pair of brake (brake disc and pads), in addition to reducing the active safety of vehicles, leads to the formation of particles that can affect the environment and human health. In addition to the technologies that are being developed for the collection of particles created by the wear of brakes during braking process, today new materials are being introduced, as well as various technologies for processing friction pairs with the aim of reducing brake wear and thus the formation of particles. Furthermore, today, technologies for coating (cladding) the friction surfaces of disc brakes with some materials are increasingly applied and researched, in order to reduce the wear intensity (wear rate) of disc brakes, i.e. the emission of particles created by wear of friction pairs. The aim of this paper is to analyse and review different deposition techniques and materials used for brake discs coatings, as well as the effect it has on the wear rate of friction pair. There are many coating deposition techniques, and special attention is paid to the technology of laser hardfacing of brake rotors.


2014 ◽  
Vol 912-914 ◽  
pp. 370-373 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

In paper are presented information about materials used for production of models by Fused Deposition Modeling (FDM) rapid prototyping technology. In today's rapid prototyping technologies the initial state of building material can be in solid, liquid or powder state. The current range materials include plastic, nylon, wax, resins, metals and ceramics. In FDM are mainly used as basic materials ABS - Acrylonitrile Butadiene Styrene, polyamide, polycarbonate, polyethylene and polypropylene. Main part of the paper is focused on experimental testing of Acrylonitrile Butadiene Styrene materials realized by different research teams and presents outputs of testing of ABS material in FDM technology realized by authors.


Sign in / Sign up

Export Citation Format

Share Document