scholarly journals Experimental Study of the Behavior of Phase Change Materials during Interrupted Phase Change Processes

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8021
Author(s):  
Rohit Jogineedi ◽  
Kaushik Biswas ◽  
Som Shrestha

This research article explores the behavior of a phase change material (PCM) when it undergoes interrupted melting and freezing, through experimental investigations using a heat flow meter apparatus. A fatty acid-based organic PCM, encapsulated within polyethylene and thin aluminum foil layers, was experimentally tested in this study. Experiments were designed to represent multiple interrupted phase change scenarios that could occur within PCMs applied in buildings. The experimental results were analyzed and compared with previously reported assumptions in numerical models dealing with PCM hysteresis and interrupted phase change processes. These comparisons indicated that the assumptions used in the different numerical models considered can capture the interrupted phase change phenomena with varying degrees of accuracy. The findings also highlighted the need for additional experimental research on different phase change processes that can occur in building applications of PCMs.

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Haoshan Ge ◽  
Jing Liu

With many emerging capabilities in pervasive computing, internet access, wireless communication, and data processing, the smartphone with high central processing unit (CPU) frequency is achieving extremely high running speed which also brings about discomfort to the users due to huge heat released. Here, an automatic temperature regulation strategy using low melting point metal gallium to absorb transitory heat was proposed for the first time. Experiments demonstrate that 3.4125 ml gallium would maintain the module below 45 °C for 16 min at 2.832 W. Such temperature holding time was longer than most of the conventional phase change materials (PCMs). Moreover, some interesting phase change phenomena were also discovered such that mixing SiO2 powder with gallium or just shaking the liquid metal container will help reduce the large supercooling of gallium which is beneficial for the material to quickly recover to its original service state again. The method is expected to be very useful and efficient in maintaining thermal comfort of many handheld electronics, especially for the burgeoning smartphones and panel personal computer (PPC).


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 724
Author(s):  
Macmanus Chinenye Ndukwu ◽  
Lyes Bennamoun ◽  
Merlin Simo-Tagne

The application of thermal storage materials in solar systems involves materials that utilize sensible heat energy, thermo-chemical reactions or phase change materials, such as hydrated salts, fatty acids paraffin and non-paraffin like glycerol. This article reviews the various exergy approaches that were applied for several solar systems including hybrid solar water heating, solar still, solar space heating, solar dryers/heaters and solar cooking systems. In fact, exergy balance was applied for the different components of the studied system with a particular attention given to the determination of the exergy efficiency and the calculation of the exergy during charging and discharging periods. The influence of the system configuration and heat transfer fluid was also emphasized. This review shows that not always the second law of thermodynamics was applied appropriately during modeling, such as how to consider heat charging and discharging periods of the tested phase change material. Accordingly, the possibility of providing with inappropriate or not complete results, was pointed.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2018 ◽  
Vol 281 ◽  
pp. 131-136
Author(s):  
Shi Chao Zhang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Liu Shi Tao ◽  
Kai Fang ◽  
...  

With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.


2021 ◽  
Vol 877 (1) ◽  
pp. 012038
Author(s):  
Abbas Sahi Shareef ◽  
Hayder Jabbar Kurji ◽  
Hassan Abdulameer Matrood

Abstract Various human activities have led to the consumption of large quantities of pure water, which has led researchers to find efficient and economical methods for desalinating seawater and water containing impurities. In this review paper, solar energy where it is permanent, abundant and environmentally friendly, to produce pure water was discussed using a new solar distillation device, representing the paper’s novelty. The distillation was designed and used in the way led to increase efficiency and improve productivity by adding a solar collector to the system and equipped with a tank containing phase change material (PCM). It has a low melting point and can change the phase by absorbing the system’s latent heat to maintain the system’s temperature. Which contributes to increasing the distillation period even after sunset, thus increasing the daily productivity of freshwater. Using phase change materials will increase distillation hours from (3-4) hours after sunset, increasing the amount of production between (75 - 90) %.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


Sign in / Sign up

Export Citation Format

Share Document