scholarly journals Optimal Selection of High-Performance Concrete for Post-Tensioned Girder Bridge Using Advanced Hybrid MCDA Method

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6553
Author(s):  
Elżbieta Janowska-Renkas ◽  
Przemysław Jakiel ◽  
Dariusz Fabianowski ◽  
Damian Matyjaszczyk

The selection of material solutions is a basic decision-making problem that occurs in engineering issues. It affects the entire life cycle of a building structure, its safe use, maintenance costs, and a need to meet requirements for sustainable development, including recycling. This paper aims at selection of the optimum composition of HPC designed for monolithic girder structures of post-tension bridges. For the analysis, a set of 12 new-generation concretes (HPC) was designed, made, and tested. A full-scope set of evaluation criteria was created and then the optimal alternative was selected. For this purpose, an advanced hybrid algorithm combining EA FAHP (Extent Analysis Fuzzy Analytic Hierarchy Process) and FuzzyTOPSIS (Fuzzy Technique for Order Preference by Similarity to an Ideal Solution) methods was used. The obtained results indicate a possibility for the practical application of the proposed algorithm by decision-making engineering staff. It can also be the basis for further research on application compared to other material and design solutions and, depending on the issue, different combination of aggregated methods.

2015 ◽  
Vol 4 (1and2) ◽  
Author(s):  
Rajeev Dhingra ◽  
Preetvanti Singh

Decision problems are usually complex and involve evaluation of several conflicting criteria (parameters). Multi Criteria Decision Making (MCDM) is a promising field that considers the parallel influence of all criteria and aims at helping decision makers in expressing their preferences, over a set of predefined alternatives, on the basis of criteria (parameters) that are contradictory in nature. The Analytic Hierarchy Process (AHP) is a useful and widespread MCDM tool for solving such type of problems, as it allows the incorporation of conflicting objectives and decision makers preferences in the decision making. The AHP utilizes the concept of pair wise comparison to find the order of criteria (parameters) and alternatives. The comparison in a pairwise manner becomes quite tedious and complex for problems having eight alternatives or more, thereby, limiting the application of AHP. This paper presents a soft hierarchical process approach based on soft set decision making which eliminates the least promising candidate alternatives and selects the optimum(potential) ones that results in the significant reduction in the number of pairwise comparisons necessary for the selection of the best alternative using AHP, giving the approach a more realistic view. A supplier selection problem is used to illustrate the proposed approach.


Author(s):  
Alexandra Hain ◽  
Arash E. Zaghi

Corrosion at steel beam ends is one of the most pressing challenges in the maintenance of aging bridges. To tackle this challenge, the Connecticut Department of Transportation (DOT) has partnered with the University of Connecticut to develop a repair method that benefits from the superior mechanical and durability characteristics of ultra-high performance concrete (UHPC) material. The repair involves welding shear studs to the intact portions of the web and encasing the beam end with UHPC. This provides an alternate load path for bearing forces that bypasses the corroded regions of the beam. The structural viability of the repair has been extensively proven through small- and full-scale experiments and comprehensive finite element simulations. Connecticut DOT implemented the repair for the first time in the field on a heavily trafficked four-span bridge in 2019. The UHPC beam end repair was chosen because of the access constraints and geometric complexities of the bridge that limited the viable repair options. Four of the repaired beam ends were fully instrumented to collect data on the performance of the repaired locations before casting, during curing, and for approximately 6 months following the application of the repair. This paper provides an overview of the successful repair implementation and presents the lessons learned during construction. Select data from the monitored beam ends are presented. It is expected that this information will provide engineers with a better understanding of the repair implementation process, and thus provide an additional repair option for states to enhance the safety of aging steel bridges.


Author(s):  
Dengfeng Wang ◽  
Shenhua Li

This work proposes a material selection decision-making method for multi-material lightweight body driven by performance to achieve that the right materials are used for the correct positions of the automotive body. The internal relationship between performance and mass, cross-sectional shape, wall thickness parameters, and material properties of a thin-walled structure is studied. The lightweight material indices driven by performance are then established. The lightweight material indices and material price are taken as the decision-making criteria for the material selection of automotive body components. A hybrid weighting method integrated with the analytic hierarchy process, fuzzy analytic hierarchy process, and quality function deployment is proposed. The difficulty of quantitatively evaluating the performance requirements of different components of the body is solved using the proposed weighting method combined with the numerical analytical results of the component performance under multiple operating conditions of the automotive body. Then, the weight of the decision-making criteria for material selection is calculated. Grey relational analysis is used to make multicriteria decision-making on a variety of candidate materials to select the best material for body components. After the lightweight material selection of the front longitudinal beam of the automotive body, the frontal collision safety performance of the body is effectively improved, and the mass of the front longitudinal beam is reduced by 45%. Material selection result of the front longitudinal beam indicates that the proposed material selection decision-making method can effectively achieve the fast material selection of components in different positions of the body.


2019 ◽  
pp. 135481661988520
Author(s):  
Joseph Andria ◽  
Giacomo di Tollo ◽  
Raffaele Pesenti

In this article, we propose a method for ranking tourist destinations and evaluating their performances under a sustainability perspective: a fuzzy multiple criteria decision-making method is applied for determining sustainability performance values and ranking destinations accordingly. We select a set of sustainability evaluation criteria and use a fuzzy analytic hierarchy process to weight the selected criteria. We also optimize each evaluator’s membership function support by means of a fuzzy entropy maximization criteria. A case study is illustrated and results are compared with two data envelopment analysis–based models. The simplicity of the proposed approach along with the easy readability of the results allow its direct applicability for all involved stakeholders.


2020 ◽  
Author(s):  
Falak Nawaz ◽  
Naeem Khalid Janjua

Abstract The number of cloud services has dramatically increased over the past few years. Consequently, finding a service with the most suitable quality of service (QoS) criteria matching the user’s requirements is becoming a challenging task. Although various decision-making methods have been proposed to help users to find their required cloud services, some uncertainties such as dynamic QoS variations hamper the users from employing such methods. Additionally, the current approaches use either static or average QoS values for cloud service selection and do not consider dynamic QoS variations. In this paper, we overcome this drawback by developing a broker-based approach for cloud service selection. In this approach, we use recently monitored QoS values to find a timeslot weighted satisfaction score that represents how well a service satisfies the user’s QoS requirements. The timeslot weighted satisfaction score is then used in Best-Worst Method, which is a multi-criteria decision-making method, to rank the available cloud services. The proposed approach is validated using Amazon’s Elastic Compute Cloud (EC2) cloud services performance data. The results show that the proposed approach leads to the selection of more suitable cloud services and is also efficient in terms of performance compared to the existing analytic hierarchy process-based cloud service selection approaches.


Author(s):  
Zhi Wen ◽  
Huchang Liao ◽  
Ruxue Ren ◽  
Chunguang Bai ◽  
Edmundas Kazimieras Zavadskas ◽  
...  

Medicine is the main means to reduce cancer mortality. However, some medicines face various risks during transportation and storage due to the particularity of medicines, which must be kept at a low temperature to ensure their quality. In this regard, it is of great significance to evaluate and select drug cold chain logistics suppliers from different perspectives to ensure the quality of medicines and reduce the risks of transportation and storage. To solve such a multiple criteria decision-making (MCDM) problem, this paper proposes an integrated model based on the combination of the SWARA (stepwise weight assessment ratio analysis) and CoCoSo (combined compromise solution) methods under the probabilistic linguistic environment. An adjustment coefficient is introduced to the SWARA method to derive criteria weights, and an improved CoCoSo method is proposed to determine the ranking of alternatives. The two methods are extended to the probabilistic linguistic environment to enhance the applicability of the two methods. A case study on the selection of drug cold chain logistics suppliers is presented to demonstrate the applicability of the proposed integrated MCDM model. The advantages of the proposed methods are highlighted through comparative analyses.


2016 ◽  
Vol 27 (4) ◽  
pp. 427-440 ◽  
Author(s):  
Manoj Govind Kharat ◽  
Rakesh D Raut ◽  
Sachin S Kamble ◽  
Sheetal Jaisingh Kamble

Purpose – The purpose of this paper is to describe an application of Multi-Criteria Decision Making (MCDM) technique for the selection of waste treatment and disposal technology for municipal solid waste (MSW). Design/methodology/approach – The proposed approach is based on the integration of Delphi and Analytic Hierarchy Process (AHP) techniques. A model has been proposed to evaluate the best treatment and disposal technology. Expert opinions have been incorporated in the selection of criteria. AHP has been used to determine the weights of criteria, followed by ranking of the available technologies. Findings – Delphi method was used to derive appropriate evaluation criteria to assess the potential alternative technologies. A set of identified holistic criteria was used, representing the environmental, social, and economic aspects, as compared to the sub-criteria concept generally found in existing literature. Quantitative weightings from the AHP model were calculated to identify the priorities of alternatives. The study provides a simple framework for technology selection as compared to the complex models present in the literature, reducing the uncertainty, cost and time consumed in the decision-making process. Practical implications – The model identifies the optimal technologies for the handling, treatment and disposal of MSW in a better economic and more environmentally sustainable way. The study provides a simple framework for selection as compared to the complex models present in the literature, reducing the uncertainty, cost and time taken by the decision-making process. Originality/value – The paper highlights a new insight into MCDM techniques to select an optimum treatment and disposal technology suitable for MSW management in India. The study identifies a minimal relevant set of evaluation criteria, and appropriate technologies for the handling, treatment, and disposal of MSW in a more economic and environmentally sustainable way.


Author(s):  
V. Alpagut YAVUZ Ph.D.

Evaluation of artistry mostly depends on subjective perceptions of experts. As a decision-making process, it involves imprecision and fuzziness, and it is difficult to justify the process. Most art programs’ admission process involves evaluation of the candidates’ pencil drawings and selecting students among competing candidates. Using a justifiable process is essential for the administrators of art programs. Fuzzy Multi-Criteria Decision Making methods provide convincing results for real-world problems involving imprecise and fuzzy data. In this study, a modified version of the Fuzzy Analytic Hierarchy Process (FAHP) and TOPSIS methods are proposed for the art student placement process. Delphi technique is used for identifying the evaluation criteria and the FAHP method is used in obtaining the importance of criteria. Rankings of the candidate students are determined using the TOPSIS method. The resulting rank order of drawings is evaluated by the committee members for validating the performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document