scholarly journals Asymptotic Analysis for Systems with Deferred Abandonment

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2187
Author(s):  
Katsunobu Sasanuma

This short paper concerns the analysis of the M/M/k queueing system with customer abandonment. In this system, service managers provide a finite buffer space, which is a waiting area that prevents customers from abandoning the system. Abandonment of the system can occur from reneging (exiting from the queue while waiting), and/or balking (leaving the system without waiting). We derive an analytical expression to represent the impact of the buffer space capacity on the delay probability and the abandonment probability for a system with deferred abandonment. The result indicates the provision of the buffer space in a large system could only increase the delay probability while the abandonment probability remains unchanged. Despite the benevolent intentions of service managers, providing a buffer space may exacerbate the performance of larger systems.

1995 ◽  
Vol 75 (4) ◽  
pp. 1852-1856
Author(s):  
L. I. Lukashuk ◽  
Yu. A. Semenchenko ◽  
Ya. Strik

2013 ◽  
Vol 724 ◽  
pp. 69-94 ◽  
Author(s):  
Hui Zhao ◽  
Shengjie Zhai

AbstractWe treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson–Nernst–Planck (PNP) model accounting for the dielectric decrement. The dielectric decrement is determined by the excess-ion-polarization parameter $\alpha $ and when $\alpha = 0$ the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials $(\zeta )$. Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer $({l}_{c} )$. For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large $\zeta $, when $\alpha \not = 0$, the electro-osmotic mobility is found to be proportional to $\zeta / 2$, in contrast to $\zeta $ as predicted by the standard PNP model. This is attributed to ion saturation at large $\zeta $. In terms of the electrophoretic mobility ${M}_{e} $, we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute ${M}_{e} $. Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate $\zeta ~({\lt }6kT/ e)$, the dielectric decrement decreases ${M}_{e} $ with increasing $\alpha $. At large $\zeta $, it is known that the surface conduction becomes significant and plays an important role in determining ${M}_{e} $. It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, ${M}_{e} $ increases as $\alpha $ increases. Our predictions of the contrast dependence of the mobility on $\alpha $ at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large $\zeta $ the validity of the thin-double-layer approximation is determined by ${l}_{c} $ rather than the traditional Debye length.


1986 ◽  
Vol 34 (1) ◽  
pp. 105-119 ◽  
Author(s):  
David Y. Burman ◽  
Donald R. Smith

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 419 ◽  
Author(s):  
Sherif Ammar ◽  
Pakkirisamy Rajadurai

In this investigation, a novel sort of retrial queueing system with working breakdown services is introduced. Two distinct kinds of customers are considered, which are priority and ordinary customers. The normal busy server may become inadequate due to catastrophes at any time which cause the major server to fail. At a failure moment, the major server is sent to be fixed and the server functions at a lower speed (called the working breakdown period) during the repair period. The probability generating functions (PGF) of the system size is found using the concepts of the supplementary variable technique (SVT). The impact of parameters in system performance measures and cost optimization are examined numerically.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 800 ◽  
Author(s):  
Ekaterina Markova ◽  
Yacov Satin ◽  
Irina Kochetkova ◽  
Alexander Zeifman ◽  
Anna Sinitcina

Given the limited frequency band resources and increasing volume of data traffic in modern multiservice networks, finding new and more efficient radio resource management (RRM) mechanisms is becoming indispensable. One of the implemented technologies to solve this problem is the licensed shared access (LSA) technology. LSA allows the spectrum that has been licensed to an owner, who has absolute priority on its utilization, to be used by other participants (i.e., tenants). Owner priority impacts negatively on the quality of service (QoS) by reducing the data bit rate and interrupting user services. In this paper, we propose a wireless multiservice network scheme model described as a queuing system with unreliable servers and a finite buffer within the LSA framework. The aim of this work is to analyze main system performance measures: blocking probability, average number of requests in queue, and average queue length depending on LSA frequencies’ availability.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1292
Author(s):  
Seokjun Lee ◽  
Sergei Dudin ◽  
Olga Dudina ◽  
Chesoong Kim ◽  
Valentina Klimenok

A single-server queueing system with a finite buffer, several types of impatient customers, and non-preemptive priorities is analyzed. The initial priority of a customer can increase during its waiting time in the queue. The behavior of the system is described by a multi-dimensional Markov chain. The generator of this chain, having essential dependencies between the components, is derived and formulas for computation of the most important performance indicators of the system are presented. The dependence of some of these indicators on the capacity of the buffer space is illustrated. The profound effect of the phenomenon of correlation of successive inter-arrival times and variance of the service time is numerically demonstrated. Results can be used for the optimization of dispatching various types of customers in information transmission systems, emergency departments and first aid stations, perishable foods supply chains, etc.


Sign in / Sign up

Export Citation Format

Share Document