scholarly journals Evaluation of Three Different Machine Learning Methods for Object-Based Artificial Terrace Mapping—A Case Study of the Loess Plateau, China

2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 709
Author(s):  
Ivan Dimitrov ◽  
Nevena Zaharieva ◽  
Irini Doytchinova

The identification of protective immunogens is the most important and vigorous initial step in the long-lasting and expensive process of vaccine design and development. Machine learning (ML) methods are very effective in data mining and in the analysis of big data such as microbial proteomes. They are able to significantly reduce the experimental work for discovering novel vaccine candidates. Here, we applied six supervised ML methods (partial least squares-based discriminant analysis, k nearest neighbor (kNN), random forest (RF), support vector machine (SVM), random subspace method (RSM), and extreme gradient boosting) on a set of 317 known bacterial immunogens and 317 bacterial non-immunogens and derived models for immunogenicity prediction. The models were validated by internal cross-validation in 10 groups from the training set and by the external test set. All of them showed good predictive ability, but the xgboost model displays the most prominent ability to identify immunogens by recognizing 84% of the known immunogens in the test set. The combined RSM-kNN model was the best in the recognition of non-immunogens, identifying 92% of them in the test set. The three best performing ML models (xgboost, RSM-kNN, and RF) were implemented in the new version of the server VaxiJen, and the prediction of bacterial immunogens is now based on majority voting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xueyuan Huang ◽  
Yongjun Wang ◽  
Bingyu Chen ◽  
Yuanshuai Huang ◽  
Xinhua Wang ◽  
...  

Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm.Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation.Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%.Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures.


2020 ◽  
Vol 12 (6) ◽  
pp. 914 ◽  
Author(s):  
Mahdieh Danesh Yazdi ◽  
Zheng Kuang ◽  
Konstantina Dimakopoulou ◽  
Benjamin Barratt ◽  
Esra Suel ◽  
...  

Estimating air pollution exposure has long been a challenge for environmental health researchers. Technological advances and novel machine learning methods have allowed us to increase the geographic range and accuracy of exposure models, making them a valuable tool in conducting health studies and identifying hotspots of pollution. Here, we have created a prediction model for daily PM2.5 levels in the Greater London area from 1st January 2005 to 31st December 2013 using an ensemble machine learning approach incorporating satellite aerosol optical depth (AOD), land use, and meteorological data. The predictions were made on a 1 km × 1 km scale over 3960 grid cells. The ensemble included predictions from three different machine learners: a random forest (RF), a gradient boosting machine (GBM), and a k-nearest neighbor (KNN) approach. Our ensemble model performed very well, with a ten-fold cross-validated R2 of 0.828. Of the three machine learners, the random forest outperformed the GBM and KNN. Our model was particularly adept at predicting day-to-day changes in PM2.5 levels with an out-of-sample temporal R2 of 0.882. However, its ability to predict spatial variability was weaker, with a R2 of 0.396. We believe this to be due to the smaller spatial variation in pollutant levels in this area.


Author(s):  
Robin Ghosh ◽  
Anirudh Reddy Cingreddy ◽  
Venkata Melapu ◽  
Sravanthi Joginipelli ◽  
Supratik Kar

Alzheimer's disease (AD) is one of the most common forms of dementia and the sixth-leading cause of death in older adults. The presented study has illustrated the applications of deep learning (DL) and associated methods, which could have a broader impact on identifying dementia stages and may guide therapy in the future for multiclass image detection. The studied datasets contain around 6,400 magnetic resonance imaging (MRI) images, each segregated into the severity of Alzheimer's classes: mild dementia, very mild dementia, non-dementia, moderate dementia. These four image specifications were used to classify the dementia stages in each patient applying the convolutional neural network (CNN) algorithm. Employing the CNN-based in silico model, the authors successfully classified and predicted the different AD stages and got around 97.19% accuracy. Again, machine learning (ML) techniques like extreme gradient boosting (XGB), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural network (ANN) offered accuracy of 96.62%, 96.56%, 94.62, and 89.88%, respectively.


2020 ◽  
Vol 12 (12) ◽  
pp. 230
Author(s):  
Ping Zhang ◽  
Rongqin Wang ◽  
Nianfeng Shi

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease all over the world and it is a major cause of renal failure. IgAN prediction in children with machine learning algorithms has been rarely studied. We retrospectively analyzed the electronic medical records from the Nanjing Eastern War Zone Hospital, chose eXtreme Gradient Boosting (XGBoost), random forest (RF), CatBoost, support vector machines (SVM), k-nearest neighbor (KNN), and extreme learning machine (ELM) models in order to predict the probability that the patient would not reach or reach end-stage renal disease (ESRD) within five years, used the chi-square test to select the most relevant 16 features as the input of the model, and designed a decision-making system (DMS) of IgAN prediction in children that is based on XGBoost and Django framework. The receiver operating characteristic (ROC) curve was used in order to evaluate the performance of the models and XGBoost had the best performance by comparison. The AUC value, accuracy, precision, recall, and f1-score of XGBoost were 85.11%, 78.60%, 75.96%, 76.70%, and 76.33%, respectively. The XGBoost model is useful for physicians and pediatric patients in providing predictions regarding IgAN. As an advantage, a DMS can be designed based on the XGBoost model to assist a physician to effectively treat IgAN in children for preventing deterioration.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jong Ho Kim ◽  
Haewon Kim ◽  
Ji Su Jang ◽  
Sung Mi Hwang ◽  
So Young Lim ◽  
...  

Abstract Background Predicting difficult airway is challengeable in patients with limited airway evaluation. The aim of this study is to develop and validate a model that predicts difficult laryngoscopy by machine learning of neck circumference and thyromental height as predictors that can be used even for patients with limited airway evaluation. Methods Variables for prediction of difficulty laryngoscopy included age, sex, height, weight, body mass index, neck circumference, and thyromental distance. Difficult laryngoscopy was defined as Grade 3 and 4 by the Cormack-Lehane classification. The preanesthesia and anesthesia data of 1677 patients who had undergone general anesthesia at a single center were collected. The data set was randomly stratified into a training set (80%) and a test set (20%), with equal distribution of difficulty laryngoscopy. The training data sets were trained with five algorithms (logistic regression, multilayer perceptron, random forest, extreme gradient boosting, and light gradient boosting machine). The prediction models were validated through a test set. Results The model’s performance using random forest was best (area under receiver operating characteristic curve = 0.79 [95% confidence interval: 0.72–0.86], area under precision-recall curve = 0.32 [95% confidence interval: 0.27–0.37]). Conclusions Machine learning can predict difficult laryngoscopy through a combination of several predictors including neck circumference and thyromental height. The performance of the model can be improved with more data, a new variable and combination of models.


2021 ◽  
Vol 10 (12) ◽  
pp. 805
Author(s):  
Xuan Fang ◽  
Jincheng Li ◽  
Ying Zhu ◽  
Jianjun Cao ◽  
Jiaming Na ◽  
...  

Terraces, which are typical artificial landforms found around world, are of great importance for agricultural production and soil and water conservation. However, due to the lack of maintenance, terrace damages often occur and affect the local flow process, which will influence soil erosion. Automatic high-accuracy mapping of terrace damages is the basis of monitoring and related studies. Researchers have achieved artificial terrace damage mapping mainly via manual field investigation, but an automatic method is still lacking. In this study, given the success of high-resolution unmanned aerial vehicle (UAV) photogrammetry and object-based image analysis (OBIA) for image processing tasks, an integrated framework based on OBIA and UAV photogrammetry is proposed for terrace damage mapping. The Pujiawa terrace in the Loess Plateau of China was selected as the study area. Firstly, the segmentation process was optimised by considering the spectral features and the terrains and corresponding textures obtained from high-resolution images and digital surface models. The feature selection was implemented via correlation analysis, and the optimised segmentation parameter was achieved using the estimation of scale parameter algorithm. Then, a supervised k-nearest neighbourhood classifier was used to identify the terrace damages in the segmented objects, and additional geometric features at the object level were considered for classification. The comparison with the ground truth, as delineated by the image and field survey, showed that proposed classification can be adequately performed. The F-measures of extraction on three terrace damages were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the Kappa coefficient was 85.34%. Finally, the potential application and spatial distribution of the terrace damages in this study were determined. We believe that this work can provide a credible framework for mapping terrace damages in the Loess Plateau of China.


2021 ◽  
pp. 289-301
Author(s):  
B. Martín ◽  
J. González–Arias ◽  
J. A. Vicente–Vírseda

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.


Sign in / Sign up

Export Citation Format

Share Document