scholarly journals A Hybrid ANP Method for Evaluation of Government Data Sustainability

2022 ◽  
Vol 14 (2) ◽  
pp. 884
Author(s):  
Jicang Xu ◽  
Linlin Li ◽  
Ming Ren

The evaluation of government data sustainability is a multicriteria decision making problem. The analytic network process (ANP) is among the most popular methods in determining the weights of criteria, and its limitation is the un-convergence problem. This paper proposes a hybrid ANP (H-ANP) method, which aims to improve the ANP by combining the weights obtained from the analytic hierarchy process (AHP). The proposed method is proved to be convergent since the network of the H-ANP is strongly connected. According to the simulation experiments, H-ANP is more robust than ANP under different settings of parameters. It also shows a higher Kendall cor-relationship and lower MSE with respect to AHP, compared with the existing method (e.g., the averagely connected ANP method). An empirical example is also provided, which uses H-ANP to evaluate the government data sustainability of a city.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
L. Hosseini ◽  
R. Tavakkoli-Moghaddam ◽  
B. Vahdani ◽  
S. M. Mousavi ◽  
R. Kia

This paper considers four types of the most prominent risks in the supply chain. Their subcriteria and relations between them and within the network are also considered. In a supply chain, risks are mostly created by fluctuations. The aim of this study is to adopt a strategy for eliminating or reducing risks in a supply chain network. Having various solutions helps the supply chain to be resilient. Therefore, five alternatives are considered, namely, total quality management (TQM), leanness, alignment, adaptability, and agility. This paper develops a new network of supply chain risks by considering the interactions between risks. Perhaps, the network elements have interacted with some or all of the factors (clusters) or subfactors. We constitute supply chain risks in the analytic network process (ANP), which attracted less attention in the previous studies. Most of the studies about making a decision in supply chains have been applied in analytic hierarchy process (AHP) network. The present study considers the ANP as a well-known multicriteria decision making (MCDM) technique to choose the best alternative, because of the interdependency and feedbacks of different levels of the network. Finally, the ANP selects TQM as the best alternative among the considered ones.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 766
Author(s):  
Danijela Tuljak-Suban ◽  
Patricija Bajec

When solving a Multi-Criteria Decision-Making problem of any degree of complexity, many researchers rely on the analytic hierarchy process (AHP). To consider mutual connections between criteria and clusters at the same level and not only the hierarchical structure between criteria and subcriteria, researchers often upgrade from AHP to the Analytic Network Process (ANP), which also examines the interdependency of criteria. However, the ANP method requires a large number of pairwise comparisons. In the case of a complex decision-making problem, the authors of this paper suggest upgrading the AHP method with the graph theory and matrix approach (GTMA) for several reasons: (1) The new method is based on digraphs and permanent value computation, which does not require a hypothesis about interdependency; (2) in case of similar alternatives, the distinguishable coefficient of the new method is higher than those computed for AHP and ANP; (3) the new method allows decision makers to rank comparable alternatives and to combine structurally similar methods without increasing the number of comparisons and the understanding of the results. The developed method (AH-GTMA) is validated by a numerical example of a complex decision-making problem based on a symmetrical set of similar alternatives, a third party logistic provider (3PLP) selection problem.


2015 ◽  
Vol 14 (06) ◽  
pp. 1263-1284 ◽  
Author(s):  
Jih-Jeng Huang ◽  
Masahiro Inuiguchi

The analytic hierarchy/network process (analytic hierarchy process (AHP)/analytic network process (ANP)) became the most popular tool for weighting criteria in the field of multiple criteria analysis during the 1980s. However, these models often suffer from criticisms because of their theoretical and practical problems. In this paper, the diminishing utility decision model (DUDM) is proposed in order to retain the pros and avoid the cons of the AHP and ANP for weighting criteria. The DUDM integrates the AHP and the concept of diminishing marginal utility in order to model the main and interaction weights of criteria, respectively. From the results of the numerical examples, it can be seen that the proposed method can solve two major limitations of the ANP. First, the proposed method can significantly reduce the number of questions that are asked in the ANP. Second, the proposed method can ensure convergence in many situations and avoid the problem of the ANP with regard to the absorbing state.


Author(s):  
JIH-JENG HUANG

In this paper, the fuzzy analytic network process (FANP) is proposed. For achieving this purpose, two problems are highlighted and overcome in this paper. First, the postulate of the reciprocal matrix should be released, because this property is not satisfied in the fuzzy comparison matrix. Second, the convergent problem for raising the fuzzy supermatrix to limiting power should be appropriately handled. In this paper, we directly fuzzify Cogger and Yu's method for obtaining the fuzzy local vectors, because their method releases the postulate of the reciprocal matrix in the analytic hierarchy process (AHP). Then, we derive the particular matrix problem for obtaining the fuzzy global weight vector so that the convergent problem in a fuzzy limiting supermatrix can be overcome.


Author(s):  
Luis G Vargas ◽  
Amos N. Guiora ◽  
Marcel C. Minutolo

Balancing public good with individual rights is a difficult task; gun policies attempt to do just this. To ensure public safety, local, state, and federal agencies piece together policies that each entity believes will meet the needs of public welfare. When legislating new gun policies, the impact the policies have on gun owners are perceived as a zero-sum game; some groups are perceived to gain while others think they are losing, but the reality is much more nuanced.    The reason the impact of these policies on all lawful gun owners has been considered a zero-sum game is largely because to date there has been no research measuring the impact. Further, there have been no attempts to quantify the impact that the policies have on lawful gun owners. The sole argument that has been made is about constitutionality.   In this paper, we develop an approach based on the Analytic Hierarchy Process (AHP). The approach allows us to develop criteria for evaluating the impact of these policies on lawful gun owners and generate priorities for the criteria from pairwise comparisons. Criteria are compared in pairs, thus the term pairwise comparisons.  This allows us to score, as with a scorecard model, gun policies for various types of gun owners with respect to the criteria according to the Benefits, Opportunities, Costs, and Risks, thereby determining the impact of each policy.


2019 ◽  
Vol 110 ◽  
pp. 02042
Author(s):  
Aliya Akhmadullina ◽  
Svetlana Vasilyeva ◽  
Tatyana Yakovleva ◽  
Svetlana Vopiyashina ◽  
Raisa Kraineva

This article describes a method for analyzing hierarchies; identifies the problems with inconsistent judgments. The proof is given that the most effective tool allowing one to make the right decisions with inconsistencies is the introduction of the eigenvector on environmental planning and management. The Analytic Hierarchy Process (AHP) is a method for decision making, which includes qualitative factors. In this method, ratio scales are obtained from ordinal scales, which are derived from individual judgments for qualitative factors using the pairwise comparison matrix. This paper describes the applicability of a multicriteria decision-making method, specifically, the analytic network process.


Sign in / Sign up

Export Citation Format

Share Document