Word Sense Disambiguation Based on Dependency Fitness with Automatic Knowledge Acquisition

2014 ◽  
Vol 24 (10) ◽  
pp. 2300-2311 ◽  
Author(s):  
Wen-Peng LU ◽  
He-Yan HUANG
Author(s):  
Tommaso Pasini

Word Sense Disambiguation (WSD) is the task of identifying the meaning of a word in a given context. It lies at the base of Natural Language Processing as it provides semantic information for words. In the last decade, great strides have been made in this field and much effort has been devoted to mitigate the knowledge acquisition bottleneck problem, i.e., the problem of semantically annotating texts at a large scale and in different languages. This issue is ubiquitous in WSD as it hinders the creation of both multilingual knowledge bases and manually-curated training sets. In this work, we first introduce the reader to the task of WSD through a short historical digression and then take the stock of the advancements to alleviate the knowledge acquisition bottleneck problem. In that, we survey the literature on manual, semi-automatic and automatic approaches to create English and multilingual corpora tagged with sense annotations and present a clear overview over supervised models for WSD. Finally, we provide our view over the future directions that we foresee for the field.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1327-1338
Author(s):  
Guo Zhen Zhao ◽  
Wan Li Zuo

Word sense disambiguation as a central research topic in natural language processing can promote the development of many applications such as information retrieval, speech synthesis, machine translation, summarization and question answering. Previous approaches can be grouped into three categories: supervised, unsupervised and knowledge-based. The accuracy of supervised methods is the highest, but they suffer from knowledge acquisition bottleneck. Unsupervised method can avoid knowledge acquisition bottleneck, but its effect is not satisfactory. With the built-up of large-scale knowledge, knowledge-based approach has attracted more and more attention. This paper introduces a new context weighting method, and based on which proposes a novel semi-supervised approach for word sense disambiguation. The significant contribution of our method is that thesaurus and machine learning techniques are integrated in word sense disambiguation. Compared with the state of the art on the test data of the English all words disambiguation task in Sensaval-3, our method yields obvious improvements over existing methods in nouns, adjectives and verbs disambiguation.


Author(s):  
Sebastian Weigelt

Systems such as Alexa, Cortana, and Siri appear rather smart. However, they only react to predefined wordings and do not actually grasp the user’s intent. To overcome this limitation, a system must understand the topics the user is talking about. Therefore, we apply unsupervised multi-topic labeling to spoken utterances. Although topic labeling is a well-studied task on textual documents, its potential for spoken input is almost unexplored. Our approach for topic labeling is tailored to spoken utterances; it copes with short and ungrammatical input. The approach is two-tiered. First, we disambiguate word senses. We utilize Wikipedia as pre-labeled corpus to train a naïve-bayes classifier. Second, we build topic graphs based on DBpedia relations. We use two strategies to determine central terms in the graphs, i.e. the shared topics. One focuses on the dominant senses in the utterance and the other covers as many distinct senses as possible. Our approach creates multiple distinct topics per utterance and ranks results. The evaluation shows that the approach is feasible; the word sense disambiguation achieves a recall of 0.799. Concerning topic labeling, in a user study subjects assessed that in 90.9% of the cases at least one proposed topic label among the first four is a good fit. With regard to precision, the subjects judged that 77.2% of the top ranked labels are a good fit or good but somewhat too broad (Fleiss’ kappa κ = 0.27). We illustrate areas of application of topic labeling in the field of programming in spoken language. With topic labeling applied to the spoken input as well as ontologies that model the situational context we are able to select the most appropriate ontologies with an F1-score of 0.907.


Author(s):  
Edoardo Barba ◽  
Luigi Procopio ◽  
Niccolò Campolungo ◽  
Tommaso Pasini ◽  
Roberto Navigli

The knowledge acquisition bottleneck strongly affects the creation of multilingual sense-annotated data, hence limiting the power of supervised systems when applied to multilingual Word Sense Disambiguation. In this paper, we propose a semi-supervised approach based upon a novel label propagation scheme, which, by jointly leveraging contextualized word embeddings and the multilingual information enclosed in a knowledge base, projects sense labels from a high-resource language, i.e., English, to lower-resourced ones. Backed by several experiments, we provide empirical evidence that our automatically created datasets are of a higher quality than those generated by other competitors and lead a supervised model to achieve state-of-the-art performances in all multilingual Word Sense Disambiguation tasks. We make our datasets available for research purposes at https://github.com/SapienzaNLP/mulan.


Author(s):  
Manuel Ladron de Guevara ◽  
Christopher George ◽  
Akshat Gupta ◽  
Daragh Byrne ◽  
Ramesh Krishnamurti

Sign in / Sign up

Export Citation Format

Share Document