scholarly journals Expanding the Time Domain of Multiple Populations: Evidence of Nitrogen Variations in the ∼1.5 Gyr Old Star Cluster NGC 1783

2021 ◽  
Vol 924 (1) ◽  
pp. L2
Author(s):  
Mario Cadelano ◽  
Emanuele Dalessandro ◽  
Maurizio Salaris ◽  
Nate Bastian ◽  
Alessio Mucciarelli ◽  
...  

Abstract We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (∼1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343N − m F438W, m F438W) color–magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of Δ([N/Fe]) ∼ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.

2020 ◽  
Vol 493 (4) ◽  
pp. 6060-6070 ◽  
Author(s):  
S Saracino ◽  
S Martocchia ◽  
N Bastian ◽  
V Kozhurina-Platais ◽  
W Chantereau ◽  
...  

ABSTRACT Recent studies have revealed that the multiple populations (MPs) phenomenon does not occur only in ancient and massive Galactic globular clusters (GCs), but it is also observed in external galaxies, where GCs sample a wide age range with respect to the Milky Way. However, for a long time, it was unclear whether we were looking at the same phenomenon in different environments or not. The first evidence that the MPs phenomenon is the same regardless of cluster age and host galaxy came out recently, when an intermediate-age cluster from the Small Magellanic Cloud, Lindsay 1, and a Galactic GC have been directly compared. By complementing those data with new images from the Hubble Space Telescope (HST), we extend the comparison to two clusters of different ages: NGC 2121 (∼2.5 Gyr) and NGC 1783 (∼1.5 Gyr), from the Large Magellanic Cloud. We find a clear correlation between the RGB (red giant branch) width in the pseudo-colour CF275W, F343N, F438W and the age of the cluster itself, with the older cluster having larger σ(CF275W, F343N, F438W)RGB and vice versa. Unfortunately, the σ values cannot be directly linked to the N-abundance variations within the clusters before properly taking account the effect of the first dredge-up. Such HST data also allow us to explore whether multiple star formation episodes occurred within NGC 2121. The two populations are indistinguishable, with an age difference of only 6 ± 12 Myr and an initial helium spread of 0.02 or lower. This confirms our previous results, putting serious constraints on any model proposed to explain the origin of the chemical anomalies in GCs.


2020 ◽  
Vol 494 (2) ◽  
pp. 1946-1955
Author(s):  
Christina K Gilligan ◽  
Brian Chaboyer ◽  
Jeffrey D Cummings ◽  
Dougal Mackey ◽  
Roger E Cohen ◽  
...  

ABSTRACT We examine four ancient Large Magellanic Cloud (LMC) globular clusters (GCs) for evidence of multiple stellar populations using the Advanced Camera for Surveys and Wide Field Camera 3 on the Hubble Space Telescope Programme GO-14164. NGC 1466, NGC 1841, and NGC 2257 all show evidence for a redder, secondary population along the main sequence. Reticulum does not show evidence for the presence of a redder population, but this GC has the least number of stars and Monte Carlo simulations indicate that the sample of main-sequence stars is too small to robustly infer whether a redder population exists in this cluster. The second, redder, population of the other three clusters constitutes $\sim 30-40{{\ \rm per\ cent}}$ of the total population along the main sequence. This brings the total number of ancient LMC GCs with known split or broadened main sequences to five. However, unlike for Hodge 11 and NGC 2210 (see Gilligan et al. (2019)), none of the clusters shows evidence for multiple populations in the horizontal branch. We also do not find evidence of a second population along the red giant branch.


2020 ◽  
Vol 492 (3) ◽  
pp. 3459-3464 ◽  
Author(s):  
Maurizio Salaris ◽  
Chris Usher ◽  
Silvia Martocchia ◽  
Emanuele Dalessandro ◽  
Nate Bastian ◽  
...  

ABSTRACT The existence of star-to-star light-element abundance variations (multiple populations, MPs) in massive Galactic and extragalactic star clusters older than about 2 Gyr is by now well established. Photometry of red giant branch (RGB) stars has been and still is instrumental in enabling the detection and characterization of cluster MPs, through the appropriate choices of filters, colours, and colour combinations that are mainly sensitive to N and – to a lesser degree – C stellar surface abundances. An important issue not yet properly addressed is that the translation of the observed widths of the cluster RGBs to abundance spreads must account for the effect of the first dredge-up on the surface chemical patterns, hence on the spectral energy distributions of stars belonging to the various MPs. We have filled this gap by studying theoretically the impact of the dredge-up on the predicted widths of RGBs in clusters hosting MPs. We find that for a given initial range of N abundances, the first dredge-up reduces the predicted RGB widths in N-sensitive filters compared to the case when its effect on the stellar spectral energy distributions is not accounted for. This reduction is a strong function of age and has also a dependence on metallicity. The net effect is an underestimate of the initial N-abundance ranges from RGB photometry if the first dredge-up is not accounted for in the modelling, and also the potential determination of spurious trends of N-abundance spreads with age.


2019 ◽  
Vol 489 (1) ◽  
pp. L80-L85 ◽  
Author(s):  
Nate Bastian ◽  
Christopher Usher ◽  
Sebastian Kamann ◽  
Carmela Lardo ◽  
Søren S Larsen ◽  
...  

ABSTRACT The presence of star-to-star light-element abundance variations (also known as multiple populations, MPs) appears to be ubiquitous within old and massive clusters in the Milky Way and all studied nearby galaxies. Most previous studies have focused on resolved images or spectroscopy of individual stars, although there has been significant effort in the past few years to look for multiple population signatures in integrated light spectroscopy. If proven feasible, integrated light studies offer a potential way to vastly open parameter space, as clusters out to 10s of Mpc can be studied. We use the Na D lines in the integrated spectra of two clusters with similar ages (2–3 Gyr) but very different masses: NGC 1978 (∼3 × 105 M⊙) in the Large Magellanic Cloud and G114 (1.7 × 107 M⊙) in NGC 1316. For NGC 1978, our findings agree with resolved studies of individual stars that did not find evidence for Na spreads. However, for G114, we find clear evidence for the presence of multiple populations. The fact that the same anomalous abundance patterns are found in both the intermediate age and ancient globular clusters lends further support to the notion that young massive clusters are effectively the same as the ancient globular clusters, only separated in age.


2018 ◽  
Vol 618 ◽  
pp. A131 ◽  
Author(s):  
E. Dalessandro ◽  
C. Lardo ◽  
M. Cadelano ◽  
S. Saracino ◽  
N. Bastian ◽  
...  

It has been suggested that IC 4499 is one of the very few old globulars to not host multiple populations with light-element variations. To follow-up on this very interesting result, here we have made use of accurate HST photometry and FLAMES at VLT high-resolution spectroscopy to investigate in more detail the stellar population properties of this system. We find that the red giant branch of the cluster is clearly bimodal in near-UV-optical colour-magnitude diagrams, thus suggesting that IC 4499 is actually composed by two sub-populations of stars with different nitrogen abundances. This represents the first detection of multiple populations in IC 4499. Consistently, we also find that one star out of six is Na-rich to some extent, while we do not detect any evidence of intrinsic spread in both Mg and O. The number ratio between stars with normal and enriched nitrogen is in good agreement with the number ratio – mass trend observed in Galactic globular clusters. Also, as typically found in other systems, nitrogen rich stars are more centrally concentrated than normal stars, although this result cannot be considered conclusive because of the limited field of view covered by our observations (∼1rh). On the contrary, we observe that both the RGB UV colour spread, which is a proxy of N variations, and Na abundance variations, are significantly smaller than those observed in Milky Way globular clusters with mass and metallicity comparable to IC 4499. The modest N and Na spreads observed in this system can be tentatively connected to the fact that IC 4499 likely formed in a disrupted dwarf galaxy orbiting the Milky Way, as previously proposed based on its orbit.


2020 ◽  
Vol 498 (3) ◽  
pp. 4472-4480
Author(s):  
S Saracino ◽  
S Kamann ◽  
C Usher ◽  
N Bastian ◽  
S Martocchia ◽  
...  

ABSTRACT Nearly all of the well-studied ancient globular clusters (GCs), in the Milky Way and in nearby galaxies, show star-to-star variations in specific elements (e.g. He, C, N, O, Na, and Al), known as ‘multiple populations’ (MPs). However, MPs are not restricted to ancient clusters, with massive clusters down to ∼2 Gyr showing signs of chemical variations. This suggests that young and old clusters share the same formation mechanism but most of the work to date on younger clusters has focused on N variations. Initial studies even suggested that younger clusters may not host spreads in other elements beyond N (e.g. Na), calling into question whether these abundance variations share the same origin as in the older GCs. In this work, we combine Hubble Space Telescope (HST) photometry with Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy of a large sample of red giant branch (RGB) stars (338) in the Large Magellanic Cloud cluster NGC 1978, the youngest globular to date with reported MPs in the form of N spreads. By combining the spectra of individual RGB stars into N-normal and N-enhanced samples, based on the ‘chromosome map’ derived from HST, we search for mean abundance variations. Based on the NaD line, we find a Na difference of Δ[Na/Fe] = 0.07 ± 0.01 between the populations. While this difference is smaller than typically found in ancient GCs (which may suggest a correlation with age), this result further confirms that the MP phenomenon is the same, regardless of cluster age and host galaxy. As such, these young clusters offer some of the strictest tests for theories on the origin of MPs.


2018 ◽  
Vol 616 ◽  
pp. A181 ◽  
Author(s):  
L. Monaco ◽  
S. Villanova ◽  
G. Carraro ◽  
A. Mucciarelli ◽  
C. Moni Bidin

Context. Globular clusters are known to host multiple stellar populations, which are a signature of their formation process. The globular cluster E3 is one of the few low-mass globulars that is thought not to host multiple populations. Aims. We investigate red giant branch stars in E3 with the aim of providing a first detailed chemical inventory for this cluster, we determine its radial velocity, and we provide additional insights into the possible presence of multiple populations in this cluster. Methods. We obtained high-resolution FLAMES-UVES/VLT spectra of four red giant branch stars likely members of E3. We performed a local thermodynamic equilibrium abundance analysis based on one-dimensional plane parallel ATLAS9 model atmospheres. Abundances were derived from line equivalent widths or spectrum synthesis. Results. We measured abundances of Na and of iron peak (Fe, V, Cr, Ni, Mn), α(Mg, Si, Ca, Ti), and neutron capture elements (Y, Ba, Eu). The mean cluster heliocentric radial velocity, metallicity, and sodium abundance ratio are νhelio = 12.6 ± 0.4 km s−1(σ = 0.6 ± 0.2 km s−1), [Fe/H] = −0.89 ± 0.08 dex, and [Na/Fe] = 0.18 ± 0.07 dex, respectively. The low Na abundance with no appreciable spread is suggestive of a cluster dominated by first-generation stars in agreement with results based on lower resolution spectroscopy. The low number of stars observed does not allow us to rule out a minor population of second-generation stars. The observed chemical abundances are compatible with the trends observed in Milky Way stars.


2021 ◽  
Vol 503 (1) ◽  
pp. 694-703
Author(s):  
M Tailo ◽  
A P Milone ◽  
E P Lagioia ◽  
F D’Antona ◽  
S Jang ◽  
...  

ABSTRACT The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully comprehensive knowledge of the RGB mass-loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass-loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass-losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass-loss of each stellar population. The mass-losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper, we investigate seven GCs with no evidence of multiple populations and derive the RGB mass-loss by means of high-precision Hubble-Space Telescope photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass-loss ranging from ∼0.1 to ∼0.3 M⊙. The RGB mass-loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss versus metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution.


2017 ◽  
Vol 609 ◽  
pp. A13 ◽  
Author(s):  
Andreas Koch ◽  
Terese T. Hansen ◽  
Andrea Kunder

Star clusters, particularly those objects in the disk-bulge-halo interface are as yet poorly charted, despite the fact that they carry important information about the formation and the structure of the Milky Way. Here, we present a detailed chemical abundance study of the recently discovered object Gaia 1. Photometry has previously suggested it as an intermediate-age, moderately metal-rich system, although the exact values for its age and metallicity remained ambiguous in the literature. We measured detailed chemical abundances of 14 elements in four red giant members, from high-resolution (R = 25 000) spectra that firmly establish Gaia 1 as an object associated with the thick disk. The resulting mean Fe abundance is −0.62 ± 0.03(stat.)± 0.10(sys.) dex, which is more metal-poor than indicated by previous spectroscopy from the literature, but it is fully in line with values from isochrone fitting. We find that Gaia 1 is moderately enhanced in the α-elements, which allowed us to consolidate its membership with the thick disk via chemical tagging. The cluster’s Fe-peak and neutron-capture elements are similar to those found across the metal-rich disks, where the latter indicate some level of s-process activity. No significant spread in iron nor in other heavy elements was detected, whereas we find evidence of light-element variations in Na, Mg, and Al. Nonetheless, the traditional Na-O and Mg-Al (anti-)correlations, typically seen in old globular clusters, are not seen in our data. This confirms that Gaia 1 is rather a massive and luminous open cluster than a low-mass globular cluster. Finally, orbital computations of the target stars bolster our chemical findings of Gaia 1’s present-day membership with the thick disk, even though it remains unclear which mechanisms put it in that place.


Sign in / Sign up

Export Citation Format

Share Document