V2G Pilot Projects

2022 ◽  
pp. 252-267
Author(s):  
Sanchari Deb ◽  
Essam A. Al Ammar, ◽  
Hasan AlRajhi ◽  
Ibrahin Alsaidan ◽  
Samir M. Shariff

Electric vehicles (EVs) are not only a viable energy efficient mode of transport, but they have considerable capacity of providing flexible and quick responding storage alternative based on vehicle-to-grid (V2G) scheme. V2G technology facilitates bidirectional flow of energy to and from the vehicle by a power converter. However, there is skepticism regarding the economic profitability of the V2G scheme. Despite the aforementioned challenges, the V2G technology is explored in matured markets. A number of V2G pilot projects across the world have investigated different aspects of V2G integration such as technological readiness, economic feasibility, social benefits, and challenges of V2G. This work aims to review the existing pilot projects on V2G functionality.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 958
Author(s):  
Maosheng Zhang ◽  
Yu Bai ◽  
Shu Yang ◽  
Kuang Sheng

With the increasing integration density of power control unit (PCU) modules, more functional power converter units are integrated into a single module for applications in electric vehicles or hybrid electric vehicles (EVs/HEVs). Different types of power dies with different footprints are usually placed closely together. Due to the constraints from the placement of power dies and liquid cooling schemes, heat-flow paths from the junction to coolant are possibly inconsistent for power dies, resulting in different thermal resistance and capacitance (RC) characteristics of power dies. This presents a critical challenge for optimal liquid cooling at a low cost. In this paper, a highly integrated PCU module is developed for application in EVs/HEVs. The underlying mechanism of the inconsistent RC characteristics of power dies for the developed PCU module is revealed by experiments and simulations. It is found that the matching placement design of power dies with a heat sink structure and liquid cooler, as well as a liquid cooling scheme, can alleviate the inconsistent RC characteristics of power dies in highly integrated PCU modules. The findings in this paper provide valuable guidance for the design of highly integrated PCU modules.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


Author(s):  
Mohammad Paydar ◽  
Asal Kamani Fard

More than 150 cities around the world have expanded emergency cycling and walking infrastructure to increase their resilience in the face of the COVID 19 pandemic. This tendency toward walking has led it to becoming the predominant daily mode of transport that also contributes to significant changes in the relationships between the hierarchy of walking needs and walking behaviour. These changes need to be addressed in order to increase the resilience of walking environments in the face of such a pandemic. This study was designed as a theoretical and empirical literature review seeking to improve the walking behaviour in relation to the hierarchy of walking needs within the current context of COVID-19. Accordingly, the interrelationship between the main aspects relating to walking-in the context of the pandemic- and the different levels in the hierarchy of walking needs were discussed. Results are presented in five sections of “density, crowding and stress during walking”, “sense of comfort/discomfort and stress in regard to crowded spaces during walking experiences”, “crowded spaces as insecure public spaces and the contribution of the type of urban configuration”, “role of motivational/restorative factors during walking trips to reduce the overload of stress and improve mental health”, and “urban design interventions on arrangement of visual sequences during walking”.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1450
Author(s):  
Alessandro La Ganga ◽  
Roberto Re ◽  
Paolo Guglielmi

Nowadays, the demand for high power converters for DC applications, such as renewable sources or ultra-fast chargers for electric vehicles, is constantly growing. Galvanic isolation is mandatory in most of these applications. In this context, the Solid State Transformer (SST) converter plays a fundamental role. The adoption of the Medium Frequency Transformers (MFT) guarantees galvanic isolation in addition to high performance in reduced size. In the present paper, a multi MFT structure is proposed as a solution to improve the power density and the modularity of the system. Starting from 20kW planar transformer model, experimentally validated, a multi-transformer structure is analyzed. After an analytical treatment of the Input Parallel Output Series (IPOS) structure, an equivalent electrical model of a 200kW IPOS (made by 10 MFTs) is introduced. The model is validated by experimental measurements and tests.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 539
Author(s):  
Maria Taljegard ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
Filip Johnsson

This study describes, applies, and compares three different approaches to integrate electric vehicles (EVs) in a cost-minimising electricity system investment model and a dispatch model. The approaches include both an aggregated vehicle representation and individual driving profiles of passenger EVs. The driving patterns of 426 randomly selected vehicles in Sweden were recorded between 30 and 73 days each and used as input to the electricity system model for the individual driving profiles. The main conclusion is that an aggregated vehicle representation gives similar results as when including individual driving profiles for most scenarios modelled. However, this study also concludes that it is important to represent the heterogeneity of individual driving profiles in electricity system optimisation models when: (i) charging infrastructure is limited to only the home location in regions with a high share of solar and wind power in the electricity system, and (ii) when addressing special research issues such as impact of vehicle-to-grid (V2G) on battery health status. An aggregated vehicle representation will, if the charging infrastructure is limited to only home location, over-estimate the V2G potential resulting in a higher share (up to 10 percentage points) of variable renewable electricity generation and an under-estimation of investments in both short- and long-term storage technologies.


2021 ◽  
Vol 13 (2) ◽  
pp. 754
Author(s):  
H.-Ping Tserng ◽  
Cheng-Mo Chou ◽  
Yun-Tsui Chang

The building industry is blamed for consuming enormous natural resources and creating massive solid waste worldwide. In response to this, the concept of circular economy (CE) has gained much attention in the sector in recent years. Many pilot building projects that implemented CE concepts started to appear around the world, including Taiwan. However, compared with the pilot projects in the Netherlands, which are regarded as the pioneer ones by international society, many CE-related practices are not implemented in pilot cases in Taiwan. To assist future project stakeholders to recognize what the key CE-related practices are and how they could be implemented in their building projects in Taiwan, this study has conducted a series of case studies of Dutch and Taiwanese pilot projects and semi-structured interviews with key project stakeholders of Taiwanese pilot projects. Thirty key CE-related practices are identified via case studies, along with their related 5R principles (Rethink, Reduce, Reuse, Repair, Recycle) and project phases. Suggestion on CE-related practices, their 5R principles, project items, and phases to implement in building projects in Taiwan is also proposed while discussion on differences between two countries’ pilot projects is presented.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1090
Author(s):  
Charilaos Latinopoulos ◽  
Aruna Sivakumar ◽  
John W. Polak

The recent revolution in electric mobility is both crucial and promising in the coordinated effort to reduce global emissions and tackle climate change. However, mass electrification brings up new technical problems that need to be solved. The increasing penetration rates of electric vehicles will add an unprecedented energy load to existing power grids. The stability and the quality of power systems, especially on a local distribution level, will be compromised by multiple vehicles that are simultaneously connected to the grid. In this paper, the authors propose a choice-based pricing algorithm to indirectly control the charging and V2G activities of electric vehicles in non-residential facilities. Two metaheuristic approaches were applied to solve the optimization problem, and a comparative analysis was performed to evaluate their performance. The proposed algorithm would result in a significant revenue increase for the parking operator, and at the same time, it could alleviate the overloading of local distribution transformers and postpone heavy infrastructure investments.


Sign in / Sign up

Export Citation Format

Share Document