The Effect of Product Modularity on Supplier Integration

2022 ◽  
pp. 226-251
Author(s):  
Metehan Feridun Sorkun ◽  
Özgür Özpeynirci

This chapter seeks to identify the set of conditions under which the mirroring hypothesis holds, proposing that modular product architecture leads to organizational modularity (i.e., supplier disintegration). The contradictory results on the mirroring hypothesis in the extant literature call for a more holistic analysis of the issue. To this end, this chapter develops a multi-objective mathematical model, allowing for the simultaneous examination of potentially influential factors, including those claimed to be neglected by the mirroring hypothesis. The findings reveal that modular product architecture does not necessarily lead to supplier disintegration, but that its effect is contingent on a firm's priorities.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hai-jun Wang ◽  
Chao-hui Shu

In an open innovation environment, it is meaningful for manufacturing enterprises targeting global markets to integrate qualified innovation resources. In this paper, the linkage between product modularity and open innovation is first discussed, revealing a role that modular product architecture plays in linking enterprises’ innovation requirements and innovation resources as external innovation inputs. Next, indices for evaluating external innovation resources are developed. An evaluation method based on fuzzy distance is then proposed, which is intended to select optimal resources for the core modules of modular product architecture. A modular product of Haier Group is used as a typical case to verify the proposed method. Consistent evaluation results of innovation resources are achieved for different decision-making attitudes. Another finding regarding the case enterprise is that the resource management mechanisms it employs lead to a win-win cooperative relationship with its partners.


2021 ◽  
Vol 1 ◽  
pp. 2057-2066
Author(s):  
Nicola Viktoria Ganter ◽  
Behrend Bode ◽  
Paul Christoph Gembarski ◽  
Roland Lachmayer

AbstractOne of the arguments against an increased use of repair is that, due to the constantly growing progress, an often already outdated component would be restored. However, refurbishment also allows a component to be modified in order to upgrade it to the state of the art or to adapt it to changed requirements. Many existing approaches regarding Design for Upgradeability are based on a modular product architecture. In these approaches, however, only the upgradeability of a product is considered through the exchange of components. Nevertheless, the exchange and improvement of individual component regions within a refurbishment has already been successfully carried out using additive processes. In this paper, a general method is presented to support the reengineering process, which is necessary to refurbish and upgrade a damaged component. In order to identify which areas can be replaced in the closed system of a component, the systematics of the modular product architecture are used. This allows dependencies between functions and component regions to be identified. Thus, it possible to determine which functions can be integrated into the intended component.


2014 ◽  
Vol 32 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Tucker J. Marion ◽  
Marc H. Meyer ◽  
Gloria Barczak

2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


Sign in / Sign up

Export Citation Format

Share Document