scholarly journals Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models

Author(s):  
Gillian Thornhill ◽  
William Collins ◽  
Dirk Olivié ◽  
Alex Archibald ◽  
Susanne Bauer ◽  
...  

Abstract. Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models include aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks which it is important to understand and quantify. This paper addresses the multiple pathways for aerosol and chemical feedbacks in Earth system models. This is achieved by extending previous formalisms which include CO2 concentrations as a state variable to a formalism which in principle includes the concentrations of all climate-active atmospheric constituents. This framework is demonstrated by applying it to the Earth system models participating in CMIP6 with a focus on the non-CO2 reactive gases and aerosols (methane, ozone, sulphate aerosol, organic aerosol and dust). We find that the overall climate feedback through chemistry and aerosols is negative in the CMIP6 Earth system models due to increased negative forcing from aerosols with warmer temperatures. Through diagnosing changes in methane emissions and lifetime we find that if Earth system models were to allow methane to vary interactively, methane positive feedbacks (principally wetland methane emissions and biogenic VOC emissions) would offset much of the aerosol feedbacks.

Author(s):  
Roland Séférian ◽  
Sarah Berthet ◽  
Andrew Yool ◽  
Julien Palmiéri ◽  
Laurent Bopp ◽  
...  

Abstract Purpose of Review The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of marine biogeochemical models within the current generation of Earth system models (ESMs). Recent Findings The representation of marine biogeochemistry has progressed within the current generation of Earth system models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in the current generation of Earth system models. Summary Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying processes, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th phases of the Coupled Model Intercomparison Project (CMIP).


2021 ◽  
Author(s):  
Philip Goodwin ◽  
B.B. Cael

<p>Projecting the global climate feedback and surface warming responses to anthropogenic forcing scenarios remains a key priority for climate science. Here, we explore possible roles for efficient climate model ensembles in contributing to quantitative projections of future global mean surface warming and climate feedback within model hierarchies. By comparing complex and efficient (sometimes termed ‘simple’) model output to data we: (1) explore potential Bayesian approaches to model ensemble generation; (2) ask what properties an efficient climate model should have to contribute to the generation of future warming and climate feedback projections; (3) present new projections from efficient model ensembles.</p><p> </p><p>Climate processes relevant to global surface warming and climate feedback act over at least 14 orders of magnitude in space and time; from cloud droplet collisions and photosynthesis up to the global mean temperature and carbon storage over the 21<sup>st</sup> century. Due to computational resources, even the most complex Earth system models only resolve around 3 orders of magnitude in horizontal space (from grid scale up to global scale) and 6 orders of magnitude in time (from a single timestep up to a century).</p><p> </p><p>Complex Earth system models must therefore contain a great many parameterisations (including specified functional forms of equations and their coefficient values) representing sub grid-scale and sub time-scale processes. We know that these parameterisations affect the <em>quantitative</em> model projections, because different complex models produce a range of historic and future projections. However, complex Earth system models are too computationally expensive to fully sample the plausible combinations of their own parameterisations, typically being able to realise only several tens of simulations.</p><p> </p><p>In contrast, efficient climate models are able to utilise computational resources to resolve their own plausible combinations of parameterisations, through the construction of very large model ensembles. However, this parameterisation resolution occurs at the expense of a much-reduced resolution of relevant climate processes. Since the relative simplicity of efficient model representations may not capture the required complexity of the climate system, the <em>qualitative</em> nature of their simulated projections may be too simplistic. For example, an efficient climate model may use a single climate feedback value for all time and for all sources of radiative forcing, when in complex models (and the real climate system) climate feedbacks may vary over time and may respond differently to, say, localised aerosol forcing than to well mixed greenhouse gases.</p><p> </p><p>By far the dominant quantitative projections of global mean surface warming in the scientific literature, as used in the Intergovernmental Panel on Climate Change Assessment Reports, derive from relatively small ensembles of complex climate model output. However, computational resources impose an inherent trade-off between model resolution of relevant climate processes (affecting the qualitative nature of the model framework) and model ensemble resolution of plausible parameterisations (affecting the quantitative exploration of projections within that model framework). This computationally imposed trade-off suggests there may be a significant role for efficient model output, within a hierarchy of model complexities, when generating future warming projections.</p>


2020 ◽  
Author(s):  
Catherine Scott ◽  
Masaru Yoshioka ◽  
Chris Dearden ◽  
Ken Carslaw ◽  
Dominick Spracklen ◽  
...  

<p>Biogenic secondary organic aerosol (SOA) is formed as a result of the atmospheric oxidation of gas-phase biogenic volatile organic compounds (BVOCs). Here, we evaluate the ability of five European Earth System Models (CNRM-ESM2-1, EC-Earth3, IPSL-CM6, NorESM1.2, UKESM1) to capture the amount, and behaviour, of biogenic SOA in the atmosphere.</p><p>The ESMs cover a range of complexity in terms of their representation of the sources and processing of biogenic SOA (i.e., from a fixed climatology of SOA amount to an interactive BVOC emission scheme followed by atmospheric processing).</p><p>We combine station measurements of BVOC emission and atmospheric BVOC concentrations with remotely sensed isoprene emission estimates to evaluate the models’ representation of the sources of biogenic SOA. We use organic aerosol mass and particle number concentration measurements from a number of forested sites to evaluate the ability of the models to capture the seasonal cycle in the amount of biogenic SOA present, as well as its impact on the aerosol size distribution. Whilst the models appear to capture the seasonal cycle in organic aerosol well for a boreal forest site, the ESMs consistently over-predict the amount of organic aerosol present at a tropical forest location. </p><p>Finally, we explore the ability of these models to capture the observed relationships between organic aerosol mass, or particle number, and temperature. We find that the ESMs equipped with vegetation models that generate BVOC emissions interactively are able to capture well the strength of the observed relationship between temperature and organic aerosol mass. This lends confidence to the ability of these ESMs to accurately represent changes in atmospheric composition driven by climate.</p>


2010 ◽  
Vol 7 (5) ◽  
pp. 1645-1656 ◽  
Author(s):  
P. R. Halloran ◽  
T. G. Bell ◽  
I. J. Totterdell

Abstract. Dimethylsulphide (DMS) is a globally important aerosol precurser. In 1987 Charlson and others proposed that an increase in DMS production by certain phytoplankton species in response to a warming climate could stimulate increased aerosol formation, increasing the lower-atmosphere's albedo, and promoting cooling. Despite two decades of research, the global significance of this negative climate feedback remains contentious. It is therefore imperative that schemes are developed and tested, which allow for the realistic incorporation of phytoplankton DMS production into Earth System models. Using these models we can investigate the DMS-climate feedback and reduce uncertainty surrounding projections of future climate. Here we examine two empirical DMS parameterisations within the context of an Earth System model and find them to perform marginally better than the standard DMS climatology at predicting observations from an independent global dataset. We then question whether parameterisations based on our present understanding of DMS production by phytoplankton, and simple enough to incorporate into global climate models, can be shown to enhance the future predictive capacity of those models. This is an important question to ask now, as results from increasingly complex Earth System models lead us into the 5th assessment of climate science by the Intergovernmental Panel on Climate Change. Comparing observed and predicted inter-annual variability, we suggest that future climate projections may underestimate the magnitude of surface ocean DMS change. Unfortunately this conclusion relies on a relatively small dataset, in which observed inter-annual variability may be exaggerated by biases in sample collection. We therefore encourage the observational community to make repeat measurements of sea-surface DMS concentrations an important focus, and highlight areas of apparent high inter-annual variability where sampling might be carried out. Finally, we assess future projections from two similarly valid empirical DMS schemes, and demonstrate contrasting results. We therefore conclude that the use of empirical DMS parameterisations within simulations of future climate should be undertaken only with careful appreciation of the caveats discussed.


2013 ◽  
Vol 26 (15) ◽  
pp. 5289-5314 ◽  
Author(s):  
Vivek K. Arora ◽  
George J. Boer ◽  
Pierre Friedlingstein ◽  
Michael Eby ◽  
Chris D. Jones ◽  
...  

Abstract The magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO2 fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO2 concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO2 flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to diagnosed cumulative emissions that are consistent with the 1% increasing CO2 concentration scenario is about 4.5 times larger than the carbon–climate feedback. Differences in the modeled responses of the carbon budget to changes in CO2 and temperature are seen to be 3–4 times larger for the land components compared to the ocean components of participating models. The feedback parameters depend on the state of the system as well the forcing scenario but nevertheless provide insight into the behavior of the coupled carbon–climate system and a useful common framework for comparing models.


2010 ◽  
Vol 7 (1) ◽  
pp. 1295-1320 ◽  
Author(s):  
P. R. Halloran ◽  
T. G. Bell ◽  
I. J. Totterdell

Abstract. Dimethylsulphide (DMS) is a globally important aerosol precurser. In 1987 Charlson and others proposed that an increase in DMS production by certain phytoplankton species in response to a warming climate could stimulate increased aerosol formation, increasing the lower-atmosphere's albedo, and promoting cooling. Despite two decades of research, the global significance of this negative climate feedback remains contentious. It is therefore imperative that schemes are developed and tested, which allow for the realistic incorporation of phytoplankton DMS production into Earth System models. Using these models we can investigate the DMS-climate feedback and reduce uncertainty surrounding projections of future climate. Here we examine two empirical DMS parameterisations within the context of an Earth System model and find them to perform marginally better than the standard DMS climatology at predicting observations from an independent global dataset. We then question whether parameterisations based on our present understanding of DMS production by phytoplankton, and simple enough to incorporate into global climate models, can be shown to enhance the future predictive capacity of those models. This is an important question to ask now, as results from increasingly complex Earth System models lead us into the 5th assessment of climate science by the Intergovernmental Panel on Climate Change. Comparing observed and predicted interannual variability, we suggest that future climate projections may underestimate the magnitude of surface ocean DMS change. Unfortunately this conclusion relies on a relatively small dataset, in which observed interannual variability may be exaggerated by biases in sample collection. We therefore encourage the observational community to make repeat measurements of sea-surface DMS concentrations an important focus, and highlight areas of apparent high interannual variability where sampling might be carried out. Finally, we assess future projections from two similarly valid empirical DMS schemes, and demonstrate contrasting results. We therefore conclude that the use of empirical DMS parameterisations within simulations of future climate should be undertaken only with careful appreciation of the caveats discussed.


2021 ◽  
Vol 21 (2) ◽  
pp. 1105-1126
Author(s):  
Gillian Thornhill ◽  
William Collins ◽  
Dirk Olivié ◽  
Ragnhild B. Skeie ◽  
Alex Archibald ◽  
...  

Abstract. Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.


2011 ◽  
Vol 6 ◽  
pp. 216-221
Author(s):  
Sönke Zaehle ◽  
Colin Prentice ◽  
Sarah Cornell

2015 ◽  
Vol 8 (4) ◽  
pp. 3235-3292 ◽  
Author(s):  
A. L. Atchley ◽  
S. L. Painter ◽  
D. R. Harp ◽  
E. T. Coon ◽  
C. J. Wilson ◽  
...  

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.


Sign in / Sign up

Export Citation Format

Share Document