scholarly journals Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS

2022 ◽  
Vol 15 (1) ◽  
pp. 1-14
Author(s):  
Galina Wind ◽  
Arlindo M. da Silva ◽  
Kerry G. Meyer ◽  
Steven Platnick ◽  
Peter M. Norris

Abstract. The Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS) presently produces synthetic radiance data from Goddard Earth Observing System version 5 (GEOS-5) model output as if the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of atmospheric column inclusive of clouds, aerosols, and a variety of gases and land–ocean surface at a specific location. In this paper we use MCARS to study the MODIS Above-Cloud AEROsol retrieval algorithm (MOD06ACAERO). MOD06ACAERO is presently a regional research algorithm able to retrieve aerosol optical thickness over clouds, in particular absorbing biomass-burning aerosols overlying marine boundary layer clouds in the southeastern Atlantic Ocean. The algorithm's ability to provide aerosol information in cloudy conditions makes it a valuable source of information for modeling and climate studies in an area where current clear-sky-only operational MODIS aerosol retrievals effectively have a data gap between the months of June and October. We use MCARS for a verification and closure study of the MOD06ACAERO algorithm. The purpose of this study is to develop a set of constraints a model developer might use during assimilation of MOD06ACAERO data. Our simulations indicate that the MOD06ACAERO algorithm performs well for marine boundary layer clouds in the SE Atlantic provided some specific screening rules are observed. For the present study, a combination of five simulated MODIS data granules were used for a dataset of 13.5 million samples with known input conditions. When pixel retrieval uncertainty was less than 30 %, optical thickness of the underlying cloud layer was greater than 4, and scattering angle range within the cloud bow was excluded, MOD06ACAERO retrievals agreed with the underlying ground truth (GEOS-5 cloud and aerosol profiles used to generate the synthetic radiances) with a slope of 0.913, offset of 0.06, and RMSE=0.107. When only near-nadir pixels were considered (view zenith angle within ±20∘) the agreement with source data further improved (0.977, 0.051, and 0.096 respectively). Algorithm closure was examined using a single case out of the five used for verification. For closure, the MOD06ACAERO code was modified to use GEOS-5 temperature and moisture profiles as an ancillary. Agreement of MOD06ACAERO retrievals with source data for the closure study had a slope of 0.996 with an offset of −0.007 and RMSE of 0.097 at a pixel uncertainty level of less than 40 %, illustrating the benefits of high-quality ancillary atmospheric data for such retrievals.

2021 ◽  
Author(s):  
Galina Wind ◽  
Arlindo M. da Silva ◽  
Kerry G. Meyer ◽  
Steven Platnick ◽  
Peter M. Norris

Abstract. The Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS) presently produces synthetic radiance data from Goddard Earth Observing System version 5 (GEOS-5) model output as if the Moderate Resolution Imaging Spectroradiometer (MODIS) was viewing a combination of atmospheric column inclusive of clouds, aerosols and a variety of gases and land/ocean surface at a specific location. In this paper we use MCARS to study the MODIS Above-Cloud AEROsol retrieval algorithm (MOD06ACAERO). MOD06ACAERO is presently a regional research algorithm able to retrieve aerosol optical thickness over clouds, in particular absorbing biomass burning aerosols overlying marine boundary layer clouds in the Southeastern Atlantic Ocean. The algorithm's ability to provide aerosol information in cloudy conditions makes it a valuable source of information for modeling and climate studies in an area where current clear sky-only operational MODIS aerosol retrievals effectively have a data gap between the months of June and October. We use MCARS for a verification and closure study of the MOD06ACAERO algorithm. Our simulations indicate that the MOD06ACAERO algorithm performs well for marine boundary layer clouds in the SE Atlantic provided some specific screening rules are observed. For the present study, a combination of five simulated MODIS data granules was used for a dataset of 13.5 million samples with known input conditions. When pixel retrieval uncertainty was less than 30 %, optical thickness of the underlying cloud layer was greater than 4 and scattering angle range within the cloud bow was excluded, MOD06ACAERO retrievals agreed with the underlying ground truth (GEOS-5 cloud and aerosol profiles used to generate the synthetic radiances) with a slope of 0.913, offset of 0.06, and RMSE = 0.107. When only near-nadir pixels were considered (view zenith angle within +/−20 degrees) the agreement with source data further improved (0.977, 0.051 and 0.096 respectively). Algorithm closure was examined using a single case out of the five used for verification. For closure, the MOD06ACAERO code was modified to use GEOS-5 temperature and moisture profiles as ancillary. Agreement of MOD06ACAERO retrievals with source data for the closure study had a slope of 0.996 with offset −0.007 and RMSE of 0.097 at pixel uncertainty level of less than 40 %, illustrating the benefits of high-quality ancillary atmospheric data for such retrievals.


2010 ◽  
Vol 10 (19) ◽  
pp. 9535-9549 ◽  
Author(s):  
T. Zinner ◽  
G. Wind ◽  
S. Platnick ◽  
A. S. Ackerman

Abstract. Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation. For three cloud cases the possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES) with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics. We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1) a typical daytime stratocumulus deck at two times in the diurnal cycle and (2) one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three effective radius retrievals is noticed for both cloud scene types for different reasons. For our, presumably typical, overcast stratocumulus scenes with an optical thickness of 8 to 9 and rain rates at cloud bottom up to 0.05 mm/h clear drizzle impact on the retrievals can be excluded. The cumulus scene does not show much drizzle sensitivity either despite extended drizzle areas being directly visible from above (locally >1 mm/h), which is mainly due to technical characteristics of the standard retrieval approach. 3-D effects, on the other hand, produce large discrepancies between the 1.6 and 2.1 μm channel observations compared to 3.7 μm retrievals in the latter case. A general sensitivity of MODIS particle size data to drizzle formation is not corroborated by our case studies.


2018 ◽  
Vol 11 (7) ◽  
pp. 4073-4092 ◽  
Author(s):  
Robert C. Levy ◽  
Shana Mattoo ◽  
Virginia Sawyer ◽  
Yingxi Shi ◽  
Peter R. Colarco ◽  
...  

Abstract. Long-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm is applied to Moderate Resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55 µm) over both land and ocean, and an Ångström exponent (AE derived from 0.55 and 0.86 µm) over ocean. Here, we analyze the overlapping time series (since mid-2002) of the Collection 6 (C6) aerosol products. Global monthly mean AOD from MOD04 (Terra with morning overpass) is consistently higher than MYD04 (Aqua with afternoon overpass) by ∼ 13 % (∼ 0.02 over land and ∼ 0.015 over ocean), and this offset (MOD04 – MYD04) has seasonal as well as long-term variability. Focusing on 2008 and deriving yearly gridded mean AOD and AE, we find that, over ocean, the MOD04 (morning) AOD is higher and the AE is lower. Over land, there is more variability, but only biomass-burning regions tend to have AOD lower for MOD04. Using simulated aerosol fields from the Goddard Earth Observing System (GEOS-5) Earth system model and sampling separately (in time and space) along each MODIS-observed swath during 2008, the magnitudes of morning versus afternoon offsets of AOD and AE are smaller than those in the C6 products. Since the differences are not easily attributed to either aerosol diurnal cycles or sampling issues, we test additional corrections to the input reflectance data. The first, known as C6+, corrects for long-term changes to each sensor's polarization sensitivity and the response versus the scan angle and to cross-calibration from MODIS-T to MODIS-A. A second convolves the detrending and cross-calibration into scaling factors. Each method was applied upstream of the aerosol retrieval using 2008 data. While both methods reduced the overall AOD offset over land from 0.02 to 0.01, neither significantly reduced the AOD offset over ocean. The overall negative AE offset was reduced. A collection (C6.1) of all MODIS Atmosphere products was released, but we expect that the C6.1 aerosol products will maintain similar overall AOD and AE offsets. We conclude that (a) users should not interpret global differences between Terra and Aqua aerosol products as representing a true diurnal signal in the aerosol. (b) Because the MODIS-A product appears to have an overall smaller bias compared to ground-truth data, it may be more suitable for some applications. However (c), since the AOD offset is only ∼ 0.02 and within the noise level for single retrievals, both MODIS products may be adequate for most applications.


2018 ◽  
Author(s):  
Robert C. Levy ◽  
Shana Mattoo ◽  
Virginia Sawyer ◽  
Yingxi Shi ◽  
Peter R. Colarco ◽  
...  

Abstract. Long-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm has been applied to Moderate-resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55 μm) over both land and ocean, and Angstrom Exponent (AE derived from 0.55 and 0.86 μmm) over ocean. Here, we analyse the overlapping time series (since mid-2002) of the Collection 6 (C6) aerosol products. Global monthly mean AOD from MOD04 (Terra with morning overpass) is consistently higher than MYD04 (Aqua with afternoon overpass) by ~13 % (~0.02 over land and ~0.015 over ocean), and this offset (MOD04 – MYD04), has seasonal as well as long-term variability. Focusing on 2008, and deriving yearly gridded mean AOD and AE, we find that over ocean, the MOD04 (morning) AOD is higher and the AE is lower. Over land, there is more variability, but only biomass-burning regions tend to have AOD lower for MOD04. Using simulated aerosol fields from the Goddard Earth Observing System (GEOS-5) Earth system model, and sampling separately (in time and space) along each MODIS-observed swath during 2008, the magnitudes of morning versus afternoon offsets of AOD and AE are smaller than those in the C6 products. Since the differences are not easily attributed to either aerosol diurnal cycles or sampling issues, we test additional corrections to the input reflectance data. The first, known as C6+, corrects for long-term changes to each sensors' polarization sensitivity, response-versus-scan angle, and to cross-calibration from MODIS-T to MODIS-A. A second convolves the de-trending and cross-calibration into scaling factors. Each method was applied upstream of the aerosol retrieval, using 2008 data. While both methods reduced the overall AOD offset over land from 0.02 to 0.01, neither significantly reduced the AOD offset over ocean. The overall negative AE offset was reduced. A Collection (C6.1) of all MODIS-atmosphere products was released, but we expect that the C6.1 aerosol products will maintain similar overall AOD and AE offsets. We conclude that: a) users should not interpret global differences between Terra and Aqua aerosol products as representing a true diurnal signal in the aerosol. b) Because the MODIS-A product appears to have overall smaller bias compared to ground-truth, it may be more suitable for some applications, however c) since the AOD offset is only ~0.02 and within noise level for single retrievals, both MODIS products may be adequate for most applications.


2010 ◽  
Vol 10 (1) ◽  
pp. 1221-1259
Author(s):  
T. Zinner ◽  
G. Wind ◽  
S. Platnick ◽  
A. S. Ackerman

Abstract. Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation. The possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES) with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics. We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1) a typical daytime stratocumulus deck at two times in the diurnal cycle and (2) one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three effective radius retrievals is noticed for both cloud scene types for different reasons. For the presumably typical overcast stratocumulus scenes, the optical thickness (8 to 9) is large enough to mask the drizzle rain rates at cloud bottom (up to 0.05 mm/h). The cumulus scene does not show much drizzle sensitivity either despite extended drizzle areas being directly visible from above (locally >1 mm/h), which is mainly due to characteristics of the standard retrieval approach. 3-D effects, on the other hand, produce large discrepancies between the 1.6 and 2.1 μm channel observations compared to 3.7 μm retrievals in the latter case. A general sensitivity of MODIS particle size data to drizzle formation is not corroborated by our results.


2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


Sign in / Sign up

Export Citation Format

Share Document