scholarly journals Analysis of Ocean-Atmospheric features associated with extreme temperature variation over east coast of India-A special emphasis to Orissa heat waves of 1998 and 2005

MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 401-422
Author(s):  
RAJENDRAKUMAR JENAMANI

During the decade of 1998-2007, both Orissa and Andhra Pradesh at east Coast of India have been affected by heat waves more frequently and more severely causing very high damages to human lives. The most severe heat wave years for the region in the recent past are summer of 1998 over Orissa and 2003 over Andhra Pradesh when 2,042 and nearly 3054 people lost their lives respectively. In summer of 2005, though severe heat wave conditions were experienced for some days over Orissa and adjoining east coasts, the damages were not high as before. In view of such extreme temperature events have been regularly affected the region during the period where their normal frequency is low, analyses of their long period temperature data and study of their relationship with various regional and global ocean-atmospheric features are very much necessary, to find possible causes and then use them in forecasting. In the present study, an attempt has been made to analyze various temperature time series as available, varying from large domain to small domain, e.g., all India temperature, east coast of India temperature etc., to understand whether years which had recorded extreme temperatures in these larger domains have any relationship with that occurred over its very smaller domain, e.g., Orissa from station data, of which later is a part. To understand the relation between the magnitude of heat indices and loss to total human lives it caused during respective whole periods of heat waves, different heat indices, viz., general heat indices, Thom’s discomfort and Webb’s comfort indices have been computed during these extreme years over Orissa and Andhra Pradesh states and compared with total heat wave related human deaths over the respective states for the corresponding years. In addition to various heat indices, various Ocean-atmospheric characteristics, e.g., monthly SST over Bay of Bengal, day-to-day synoptic flow pattern, recurving Cyclonic Storms which strengthen low-level westerly and prohibit onset of Sea breeze over the coastal stations in the region causing persistent of heat waves, have also been critically analyzed both spatially and temporally to find role of these features in such occurrences. Their statistical lag correlations if any with ensuing temperature rise have been tested to explore the possibility of using them in forecasting these events much in advance.

2017 ◽  
Vol 17 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Guido Ceccherini ◽  
Simone Russo ◽  
Iban Ameztoy ◽  
Andrea Francesco Marchese ◽  
Cesar Carmona-Moreno

Abstract. The purpose of this article is to show the extreme temperature regime of heat waves across Africa over recent years (1981–2015). Heat waves have been quantified using the Heat Wave Magnitude Index daily (HWMId), which merges the duration and the intensity of extreme temperature events into a single numerical index. The HWMId enables a comparison between heat waves with different timing and location, and it has been applied to maximum and minimum temperature records. The time series used in this study have been derived from (1) observations from the Global Summary of the Day (GSOD) and (2) reanalysis data from ERA-Interim. The analysis shows an increasing number of heat waves of both maxima and minima temperatures in the last decades. Results from heat wave analysis of maximum temperature (HWMIdtx) indicate an increase in intensity and frequency of extreme events. Specifically, from 1996 onwards it is possible to observe HWMIdtx spread with the maximum presence during 2006–2015. Between 2006 and 2015 the frequency (spatial coverage) of extreme heat waves had increased to 24.5 observations per year (60.1 % of land cover), as compared to 12.3 per year (37.3 % of land area) in the period from 1981 to 2005 for GSOD stations (reanalysis).


2012 ◽  
Vol 79 (4) ◽  
pp. 411-418 ◽  
Author(s):  
K. S. N. Reddy ◽  
D. Deva Varma ◽  
E. N. Dhanamjaya Rao ◽  
B. Veeranarayana ◽  
T. Lakshmi Prasad

2017 ◽  
Vol 145 (10) ◽  
pp. 4109-4125 ◽  
Author(s):  
Julian F. Quinting ◽  
Michael J. Reeder

Although heat waves account for more premature deaths in the Australian region than any other natural disaster, an understanding of their dynamics is still incomplete. The present study identifies the dynamical mechanisms responsible for heat waves in southeastern Australia using 10-day backward trajectories computed from the ERA-Interim reanalyses. Prior to the formation of a heat wave, trajectories located over the south Indian Ocean and over Australia in the lower and midtroposphere ascend diabatically ahead of an upper-level trough and over a baroclinic zone to the south of the continent. These trajectories account for 44% of all trajectories forming the anticyclonic upper-level potential vorticity anomalies that characterize heat waves in the region. At the same time, trajectories located over the south Indian Ocean in the lower part of the troposphere descend and aggregate over the Tasman Sea. This descent is accompanied by a strong adiabatic warming. A key finding is that the temperatures are raised further through diabatic heating in the boundary layer over eastern Australia but not over the inner Australian continent. From eastern Australia, the air parcels are advected southward as they become incorporated into the near-surface anticyclone that defines the heat wave. In contrast to past studies, the importance of cloud-diabatic processes in the evolution of the midlatitude large-scale flow and the role of adiabatic compression in elevating the near-surface temperatures is emphasized. Likewise, the role of the local surface sensible heat fluxes is deemphasized.


2014 ◽  
Vol 27 (9) ◽  
pp. 3169-3207 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Hailan Wang ◽  
Randal D. Koster ◽  
Max J. Suarez ◽  
Pavel Ya. Groisman

Abstract This article reviews the understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA Goddard Earth Observing System model, version 5 (GEOS-5). Key new results are 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave); 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST; and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in the understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.


2007 ◽  
Vol 42 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Matthew Simpson ◽  
Hari Warrior ◽  
Sethu Raman ◽  
P. A. Aswathanarayana ◽  
U. C. Mohanty ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiayan Ren ◽  
Guohe Huang ◽  
Yongping Li ◽  
Xiong Zhou ◽  
Jinliang Xu ◽  
...  

A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.


2021 ◽  
Author(s):  
Biljana Basarin ◽  
Tin Lukić ◽  
Tanja Micić Ponjiger

<p>A detailed analysis of extreme heatwave events in Serbia from the biometeorological point of view is presented in this study.  For this purpose, the newly developed Heat Wave Magnitude Index daily (HWMId), was used on Physiologically equivalent temperature (PET) for Serbia. A series of daily maximum air temperature, relative humidity, the wind was used to calculate PET for the investigated period 1979–2019. HWMId is defined as the maximum magnitude of the heatwaves in a year. Here, the heatwave is characterized as 3 consecutive days with maximum PET above the daily threshold for the reference period 1981–2010. The analysis revealed that during the investigated period the most intensive heat waves occurred in 2007, 2012 and 2015. HWMId values for 2007 were in the range of 8 to 23 indicating extreme heat stress, while for the other two events the values were not as high. Hourly temperatures revealed that the PET values during the day were as high as 55°C. Thus, the mitigation and adaptation to extreme temperature events are of vital importance for humans and their everyday activities. Future investigation should be oriented towards a way to deal with the oppressive heat. Additionally, more research is needed in order to explain and predict these catastrophic events. The main focus of future activities will be on determining the physical causes which lead to the occurrence of extreme heatwaves.</p><p>Keywords: Heat Wave Magnitude Index daily, Physiologically equivalent temperature, Serbia, heat waves</p><p>Acknowledgment: This research is supported by <strong>EXtremeClimTwin</strong> project funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952384</p>


2020 ◽  
Author(s):  
Rachel White ◽  
Chloé Prodhomme ◽  
Georgios Fragkoulidis ◽  
Stefano Materia ◽  
Constantin Ardilouze

<p>Heat waves can have a devastating impact on human society and ecosystems, and thus improved understanding and predictability of such events would provide huge benefits. It has been shown previously that many extreme temperature events are associated with quasi-stationary, or recurrent, Rossby waves (hereafter QSWs). We show that these QSWs are often associated with atmospheric waveguides, providing some dynamical understanding of why such weather patterns persist. In the context of this framework, we study the subseasonal-to-seasonal (S2S) predictability of heatwaves, QSWs, and atmospheric waveguides. Operational seasonal forecasts can reproduce the observed climatological statistics of QSWs, and the observed connection between QSWs and extreme temperatures over Europe, although with some biases. To better understand the underlying dynamics of the seasonal forecast models, we explore whether such models are capable of reproducing the observed connection between QSWs and atmospheric waveguides,  linked to persistent, and thus high impact, extreme heat events. We examine the S2S predictability of atmospheric waveguides and high amplitude QSW events, to better understand the potential S2S predictability of heatwaves.</p>


2017 ◽  
Vol 114 (1) ◽  
pp. 134-143 ◽  
Author(s):  
Dibyendu Rakshit ◽  
Gouri Sahu ◽  
Ajit Kumar Mohanty ◽  
Kamala Kanta Satpathy ◽  
M.P. Jonathan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document