Item Response Theory (IRT) Models for Rating Scale Data

Author(s):  
George Engelhard
2021 ◽  
Vol 8 (3) ◽  
pp. 672-695
Author(s):  
Thomas DeVaney

This article presents a discussion and illustration of Mokken scale analysis (MSA), a nonparametric form of item response theory (IRT), in relation to common IRT models such as Rasch and Guttman scaling. The procedure can be used for dichotomous and ordinal polytomous data commonly used with questionnaires. The assumptions of MSA are discussed as well as characteristics that differentiate a Mokken scale from a Guttman scale. MSA is illustrated using the mokken package with R Studio and a data set that included over 3,340 responses to a modified version of the Statistical Anxiety Rating Scale. Issues addressed in the illustration include monotonicity, scalability, and invariant ordering. The R script for the illustration is included.


2001 ◽  
Vol 26 (4) ◽  
pp. 361-380 ◽  
Author(s):  
Rebecca Holman ◽  
Martijn P. F. Berger

This article examines calibration designs, which maximize the determinant of Fisher’s information matrix on the item parameters (D-optimal), for sets of polytomously scored items. These items were analyzed using a number of item response theory (IRT) models, which are members of the “divide-by-total” family, including the nominal categories model, the rating scale model, the unidimensional polytomous Rasch model and the partial credit model. We extend the known results for dichotomous items, both singly and in tests to polytomous items. The structure of Fisher’s information matrix is examined in order to gain insights into the structure of D-optimal calibration designs for IRT models. A theorem giving an upper bound for the number of support points for such models is proved. A lower bound is also given. Finally, we examine a set of items, which have been analyzed using a number of different models. The locally D-optimal calibration design for each analysis is calculated using an exact numerical and a sequential procedure. The results are discussed both in general and in relation to each other.


2020 ◽  
Vol 80 (4) ◽  
pp. 665-694
Author(s):  
Ken A. Fujimoto ◽  
Sabina R. Neugebauer

Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are highly parameterized, making them only suitable for data provided by large samples. Unfortunately, many educational and psychological studies are conducted on a small scale, leaving the researchers without the necessary MIRT models to confirm the hypothesized structures in their data. To address the lack of modeling options for these researchers, we present a general Bayesian MIRT model based on adaptive informative priors. Simulations demonstrated that our MIRT model could be used to confirm a two-tier structure (with two general and six specific dimensions), a bifactor structure (with one general and six specific dimensions), and a between-item six-dimensional structure in rating scale data representing sample sizes as small as 100. Although our goal was to provide a general MIRT model suitable for smaller samples, the simulations further revealed that our model was applicable to larger samples. We also analyzed real data from 121 individuals to illustrate that the findings of our simulations are relevant to real situations.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Gustaf J. Wellhagen ◽  
Sebastian Ueckert ◽  
Maria C. Kjellsson ◽  
Mats O. Karlsson

AbstractComposite scale data is widely used in many therapeutic areas and consists of several categorical questions/items that are usually summarized into a total score (TS). Such data is discrete and bounded by nature. The gold standard to analyse composite scale data is item response theory (IRT) models. However, IRT models require item-level data while sometimes only TS is available. This work investigates models for TS. When an IRT model exists, it can be used to derive the information as well as expected mean and variability of TS at any point, which can inform TS-analyses. We propose a new method: IRT-informed functions of expected values and standard deviation in TS-analyses. The most common models for TS-analyses are continuous variable (CV) models, while bounded integer (BI) models offer an alternative that respects scale boundaries and the nature of TS data. We investigate the method in CV and BI models on both simulated and real data. Both CV and BI models were improved in fit by IRT-informed disease progression, which allows modellers to precisely and accurately find the corresponding latent variable parameters, and IRT-informed SD, which allows deviations from homoscedasticity. The methodology provides a formal way to link IRT models and TS models, and to compare the relative information of different model types. Also, joint analyses of item-level data and TS data are made possible. Thus, IRT-informed functions can facilitate total score analysis and allow a quantitative analysis of relative merits of different analysis methods.


2021 ◽  
Vol 117 ◽  
pp. 106849
Author(s):  
Danilo Carrozzino ◽  
Kaj Sparle Christensen ◽  
Giovanni Mansueto ◽  
Fiammetta Cosci

Author(s):  
Alexandra Foubert-Samier ◽  
Anne Pavy-Le Traon ◽  
Tiphaine Saulnier ◽  
Mélanie Le-Goff ◽  
Margherita Fabbri ◽  
...  

2021 ◽  
pp. 43-48
Author(s):  
Rosa Fabbricatore ◽  
Francesco Palumbo

Evaluating learners' competencies is a crucial concern in education, and home and classroom structured tests represent an effective assessment tool. Structured tests consist of sets of items that can refer to several abilities or more than one topic. Several statistical approaches allow evaluating students considering the items in a multidimensional way, accounting for their structure. According to the evaluation's ending aim, the assessment process assigns a final grade to each student or clusters students in homogeneous groups according to their level of mastery and ability. The latter represents a helpful tool for developing tailored recommendations and remediations for each group. At this aim, latent class models represent a reference. In the item response theory (IRT) paradigm, the multidimensional latent class IRT models, releasing both the traditional constraints of unidimensionality and continuous nature of the latent trait, allow to detect sub-populations of homogeneous students according to their proficiency level also accounting for the multidimensional nature of their ability. Moreover, the semi-parametric formulation leads to several advantages in practice: It avoids normality assumptions that may not hold and reduces the computation demanding. This study compares the results of the multidimensional latent class IRT models with those obtained by a two-step procedure, which consists of firstly modeling a multidimensional IRT model to estimate students' ability and then applying a clustering algorithm to classify students accordingly. Regarding the latter, parametric and non-parametric approaches were considered. Data refer to the admission test for the degree course in psychology exploited in 2014 at the University of Naples Federico II. Students involved were N=944, and their ability dimensions were defined according to the domains assessed by the entrance exam, namely Humanities, Reading and Comprehension, Mathematics, Science, and English. In particular, a multidimensional two-parameter logistic IRT model for dichotomously-scored items was considered for students' ability estimation.


Sign in / Sign up

Export Citation Format

Share Document