The Combined Finite-Discrete Element Method

Author(s):  
Ante Munjiza
TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


2021 ◽  
Vol 910 ◽  
Author(s):  
Yiyang Jiang ◽  
Yu Guo ◽  
Zhaosheng Yu ◽  
Xia Hua ◽  
Jianzhong Lin ◽  
...  

Abstract


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 425
Author(s):  
Hongbo Zhao ◽  
Yuxiang Huang ◽  
Zhengdao Liu ◽  
Wenzheng Liu ◽  
Zhiqi Zheng

As a promising and convenient numerical calculation approach, the discrete element method (DEM) has been increasingly adopted in the research of agricultural machinery. DEM is capable of monitoring and recording the dynamic and mechanical behavior of agricultural materials in the operational process of agricultural machinery, from both a macro-perspective and micro-perspective; which has been a tremendous help for the design and optimization of agricultural machines and their components. This paper reviewed the application research status of DEM in two aspects: First is the DEM model establishment of common agricultural materials such as soil, crop seed, and straw, etc. The other is the simulation of typical operational processes of agricultural machines or their components, such as rotary tillage, subsoiling, soil compaction, furrow opening, seed and fertilizer metering, crop harvesting, and so on. Finally, we evaluate the development prospects of the application of research on the DEM in agricultural machinery, and look forward to promoting its application in the field of the optimization and design of agricultural machinery.


Sign in / Sign up

Export Citation Format

Share Document