scholarly journals Strategic Customer Behavior in a Single Server Queue

Author(s):  
Moshe Haviv
1984 ◽  
Vol 9 (4) ◽  
pp. 624-628 ◽  
Author(s):  
D. J. Daley ◽  
T. Rolski

1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.


1992 ◽  
Vol 6 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Masakiyo Miyazawa

We are concerned with a burst arrival single-server queue, where arrivals of cells in a burst are synchronized with a constant service time. The main concern is with the loss probability of cells for the queue with a finite buffer. We analyze an embedded Markov chain at departure instants of cells and get a kind of lumpability for its state space. Based on these results, this paper proposes a computation algorithm for its stationary distribution and the loss probability. Closed formulas are obtained for the first two moments of the numbers of cells and active bursts when the buffer size is infinite.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


2017 ◽  
Vol 116 ◽  
pp. 119-142 ◽  
Author(s):  
Herwig Bruneel ◽  
Sabine Wittevrongel

Sign in / Sign up

Export Citation Format

Share Document