Novel Method of Researching and Developing Piezoelectric Ceramics by Measuring Acoustic Wave Velocities

Author(s):  
Toshio Ogawa ◽  
Taiki Ikegaya
2014 ◽  
Vol 90 ◽  
pp. 33-42
Author(s):  
Toshio Ogawa

Material research and development on piezoelectric ceramics, especially lead-free ceramics, was proposed from a viewpoint of relationships between piezoelectricity and elastic constants such as Young’s modulus and Poisson’s ratio. We developed a method to be convenient to measure acoustic wave velocities by an ultrasonic thickness gauge with high-frequency. From the change in longitudinal and transvers wave velocities before and after DC poling, it was found that the ceramic bulk density was important to improve the piezoelectricity in lead-free ceramics. As a result, the candidates of lead-free ceramic compositions with higher piezoelectricity were proposed. Furthermore, the ratio of transvers wave velocity to longitudinal wave velocity was clarified to estimate compositions with higher piezoelectricity. The measurement of sound velocities was an effective method for researching and developing piezoelectric materials, and it was possible to design the material compositions of lead-free piezoelectric ceramics as well as lead-containing ceramics by the novel measuring method.


2007 ◽  
Vol 78 (2) ◽  
pp. 024901 ◽  
Author(s):  
C. Hubert ◽  
M.-H. Nadal ◽  
G. Ravel-Chapuis ◽  
R. Oltra

2019 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Salah Daoud ◽  
Abdelhakim Latreche ◽  
Pawan Kumar Saini

The bulk and surface acoustic wave velocities of Aluminum phosphide (AlP) semiconducting material under pressure up to 9.5 GPa were studied. The structural parameters and the elastic constants used in this work are taken from our previous paper published in J. Optoelec-tron. Adv. M. 16, 207 (2014). The results obtained at zero-pressure are analyzed and compared with other data of the literature. In addition, the acoustic Grüneisen parameter and the Vickers and Knoop microhardness are predicted and analyzed in detail. Our calculated results are in good agreement with the experimental and other theoretical data of literature.   


2018 ◽  
Vol 32 (20) ◽  
pp. 1850210 ◽  
Author(s):  
O. A. Al-Hagan ◽  
H. Algarni ◽  
N. Bouarissa ◽  
M. Ajmal Khan ◽  
T. F. Alhuwaymel

The band structure of Al[Formula: see text]Ga[Formula: see text]Sb semiconducting ternary alloys and their related properties such as elastic constants, microhardness, transition pressure to the first phase, acoustic wave velocities and melting temperature have been investigated. The calculations are performed using a pseudopotential approach within the virtual crystal approximation which includes the effect of compositional disorder as an effective potential. Generally, our results are found to be in good accord with the experimental results. The composition dependence of all features of interest showed a monotonic behavior and suggests that the stiffness, hardness and structural stability becomes better in Al[Formula: see text]Ga[Formula: see text]Sb for higher Al concentrations. The bulk sound speeds and melting temperature are found to become larger when increasing the Al content.


Author(s):  
Yancheng Wang ◽  
Chenyang Han ◽  
Deqing Mei ◽  
Chengyao Xu

Abstract Polymer-based substrates with patterned microstructure on the surfaces, e.g., cell culturing scaffolds, have been utilized in biomedical applications. This paper develops a novel method to fabricate the localized microstructure on the polymer-based substrate with the assistance of standing surface acoustic wave (SAW) and user-defined acoustic waveguides. The specific designed acoustic waveguides can localize the standing acoustic waves and transmit to the liquid film and excite patterned microstructures on the surface, then using ultraviolet (UV) to solidify the substrate with patterned microstructures. The structural design and fabrication of the SAW device and three different shaped acoustic waveguides are presented. Then, experimental setup and procedures to verify the polymer-substrate with localized microstructures fabrication are performed. By using the different shape of the acoustic waveguides, several types of patterned microstructures with different morphologies are successfully fabricated. Results demonstrated that the proposed fabrication method is an effective way to fabricate polymer-based substrate with localized patterned microstructures, which may have potential in the research on tissue engineering, cell-cell interaction, and other biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document