The internet of things (IoT) generates large amounts of data that are sent to the cloud to be stored, processed, and analyzed to extract useful information. However, the cloud-based big data analytics approach is not completely appropriate for the analysis of IoT data sources, and presents some issues and limitations, such as inherent delay, late response, and high bandwidth occupancy. Fog computing emerges as a possible solution to address these cloud limitations by extending cloud computing capabilities at the network edge (i.e., gateways, switches), close to the IoT devices. This chapter presents a comprehensive overview of IoT big data analytics architectures, approaches, and solutions. Particularly, the fog-cloud reference architecture is proposed as the best approach for performing big data analytics in IoT ecosystems. Moreover, the benefits of the fog-cloud approach are analyzed in two IoT application case studies. Finally, fog-cloud open research challenges are described, providing some guidelines to researchers and application developers to address fog-cloud limitations.