scholarly journals A Biomimetic, Copolymeric Membrane for Cell‐Stretch Experiments with Pulmonary Epithelial Cells at the Air‐Liquid Interface

2020 ◽  
pp. 2004707
Author(s):  
Ali Doryab ◽  
Mehmet Berat Taskin ◽  
Philipp Stahlhut ◽  
Andreas Schröppel ◽  
Darcy E. Wagner ◽  
...  
Author(s):  
Ali Doryab ◽  
Mehmet Berat Taskin ◽  
Philipp Stahlhut ◽  
Andreas Schröppel ◽  
Sezer Orak ◽  
...  

Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m2) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic InVItroCell-stretch (CIVIC) “breathing” lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o−) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35% PCL and 6.34% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2639
Author(s):  
Frauke Stanke ◽  
Sabina Janciauskiene ◽  
Stephanie Tamm ◽  
Sabine Wrenger ◽  
Ellen Luise Raddatz ◽  
...  

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is influenced by the fundamental cellular processes like epithelial differentiation/polarization, regeneration and epithelial–mesenchymal transition. Defects in CFTR protein levels and/or function lead to decreased airway surface liquid layer facilitating microbial colonization and inflammation. The SERPINA1 gene, encoding alpha1-antitrypsin (AAT) protein, is one of the genes implicated in CF, however it remains unknown whether AAT has any influence on CFTR levels. In this study we assessed CFTR protein levels in primary human lung epithelial cells grown at the air-liquid-interface (ALI) alone or pre-incubated with AAT by Western blots and immunohistochemistry. Histological analysis of ALI inserts revealed CFTR- and AAT-positive cells but no AAT-CFTR co-localization. When 0.5 mg/mL of AAT was added to apical or basolateral compartments of pro-inflammatory activated ALI cultures, CFTR levels increased relative to activated ALIs. This finding suggests that AAT is CFTR-modulating protein, albeit its effects may depend on the concentration and the route of administration. Human lung epithelial ALI cultures provide a useful tool for studies in detail how AAT or other pharmaceuticals affect the levels and activity of CFTR.


2021 ◽  
pp. 105122
Author(s):  
Thuc Nguyen Dan Do ◽  
Kim Donckers ◽  
Laura Vangeel ◽  
Arnab K. Chatterjee ◽  
Philippe A. Gallay ◽  
...  

2020 ◽  
Vol 318 (6) ◽  
pp. L1158-L1164
Author(s):  
Emily Mavin ◽  
Bernard Verdon ◽  
Sean Carrie ◽  
Vinciane Saint-Criq ◽  
Jason Powell ◽  
...  

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


Sign in / Sign up

Export Citation Format

Share Document