Kinetics of the intercalation of cations into MnPS3 using real time in situ x-ray diffraction

1994 ◽  
Vol 6 (9) ◽  
pp. 646-648 ◽  
Author(s):  
John S. O. Evans ◽  
Dermot O'hare
2000 ◽  
Vol 104 (11) ◽  
pp. 2467-2476 ◽  
Author(s):  
H. Natter ◽  
M. Schmelzer ◽  
M.-S Löffler ◽  
C. E. Krill ◽  
A. Fitch ◽  
...  

2018 ◽  
Vol 9 (23) ◽  
pp. 6750-6754 ◽  
Author(s):  
Alessandro Greco ◽  
Alexander Hinderhofer ◽  
M. Ibrahim Dar ◽  
Neha Arora ◽  
Jan Hagenlocher ◽  
...  

2020 ◽  
Vol 53 (4) ◽  
pp. 1163-1166
Author(s):  
Karsten Mesecke ◽  
Winfried Malorny ◽  
Laurence N. Warr

This note describes an autoclave chamber developed and constructed by Anton Paar and its application for in situ experiments under hydrothermal conditions. Reactions of crystalline phases can be studied by successive in situ measurements on a conventional laboratory X-ray diffractometer with Bragg–Brentano geometry at temperatures <483 K and saturated vapour pressure <2 MPa. Variations in the intensity of X-ray diffraction reflections of both reactants and products provide quantitative information for studying the reaction kinetics of both dissolution and crystal growth. Feasibility is demonstrated by studying a cementitious mixture used for autoclaved aerated concrete production. During a period of 5.7 h at 466 K and 1.35 MPa, the crystallization of torbermorite and the partial consumption of quartz were monitored.


Nanoscale ◽  
2021 ◽  
Author(s):  
Helena Fridman ◽  
Michael Volokh ◽  
Taleb Mokari

Nanocrystal growth dynamics are investigated by a novel approach: real-time observation of nanocrystals in growth solutions using lab-scale in situ X-ray diffraction. The method reveals the evolution of crystal phase, size, shape, and composition.


2013 ◽  
Vol 52 (44) ◽  
pp. 11665-11665
Author(s):  
Ivan Halasz ◽  
Andreas Puškarić ◽  
Simon A. J. Kimber ◽  
Patrick J. Beldon ◽  
Ana M. Belenguer ◽  
...  

2016 ◽  
Vol 88 (11) ◽  
pp. 1684-1692 ◽  
Author(s):  
Lukas C. Buelens ◽  
Vladimir V. Galvita ◽  
Hilde Poelman ◽  
Christophe Detavernier ◽  
Guy B. Marin

2014 ◽  
Vol 1645 ◽  
Author(s):  
Romain VAUCHY ◽  
Renaud.C. BELIN ◽  
Anne-Charlotte ROBISSON ◽  
Fiqiri HODAJ

ABSTRACTUranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.


2013 ◽  
Vol 8 (9) ◽  
pp. 1718-1729 ◽  
Author(s):  
Ivan Halasz ◽  
Simon A J Kimber ◽  
Patrick J Beldon ◽  
Ana M Belenguer ◽  
Frank Adams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document