scholarly journals Real‐Time Apoptosis Imaging: A Quenched Annexin V‐Fluorophore for the Real‐Time Fluorescence Imaging of Apoptotic Processes In Vitro and In Vivo (Adv. Sci. 24/2020)

2020 ◽  
Vol 7 (24) ◽  
pp. 2070137
Author(s):  
Hyunjin Kim ◽  
Hee Yeon Kim ◽  
Eun Young Lee ◽  
Boem Kyu Choi ◽  
Hyonchol Jang ◽  
...  
2020 ◽  
Vol 7 (24) ◽  
pp. 2002988
Author(s):  
Hyunjin Kim ◽  
Hee Yeon Kim ◽  
Eun Young Lee ◽  
Boem Kyu Choi ◽  
Hyonchol Jang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38244-38250
Author(s):  
Setsuko Tsuboi ◽  
Takashi Jin

Indocyanine green labeled recombinant annexin V probes (ICG–EGFP–Annexin V and ICG–mPlum–Annexin V) were synthesized for near-infrared and visible fluorescence imaging of tumor cell apoptosis both in vitro and in vivo.


Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Di Girolamo ◽  
M Appignani ◽  
N Furia ◽  
M Marini ◽  
P De Filippo ◽  
...  

Abstract Background Direct exposure of implantable cardioverter-defibrillators (ICDs) during radiotherapy is still considered potentially harmful, or even unsafe, by manufacturers and current recommendations. The effects of photon beams on ICDs are unpredictable, depending on multiple factors, and malfunctions may present during exposure. Purpose To evaluate transient ICD malfunctions by direct exposure to doses up to 10 Gy during low-energy RT, forty-three contemporary wireless-enabled ICDs, with at least 4 months to elective replacement indicator (ERI) were evaluated in a real-time in-vitro session in three different centres. Methods All ICDs had baseline interrogation. Single chamber devices were programmed to the VVI/40 mode and dual or triple chamber devices were programmed to the DDD/40 mode. Rate response function and antitachycardia therapies were disabled, with the ventricular tachycardia (VT)/ventricular fibrillation (VF) detection windows still active. A centring computed tomography was performed to build the corresponding treatment plan and the ICDs were blinded randomized to receive either 2-, 5- or 10-Gy exposure by a low photon-energy linear accelerator (6MV) in a homemade water phantom (600 MU/min). The effective dose received by the ICDs was randomly assessed by an in-vivo dosimetry. During radiotherapy, the ICDs were observed in a real-time session using manufacturer specific programmer, and device function (pacing, sensing, programmed parameters, arrhythmia detections) was recorder by the video camera in the bunker throughout the entire photon exposure. All ICDs had an interrogation session immediately after exposure. Results During radiotherapy course, almost all ICDs (93%) recorded major or minor transient electromagnetic interferences. On detail, sixteen ICDs (37.2%) reported atrial and/or ventricular oversensing, with base-rate-pacing inhibition and VT/VF detection. Twenty-four ICDs (55.8%) recorded non clinically relevant noise, and no detections were observed. Only three ICDs (7%) reported neither transient malfunction nor minor noise, withstanding direct radiation exposure. At immediate post-exposure interrogation, the ICDs that recorded major real-time malfunctions had VT/VF detections stored in the device memory. In none of the ICDs spontaneous changes in parameter settings were reported. Malfunctions occurred regardless of either 2-, 5- or 10-Gy photon beam exposure. Conclusions Transient electromagnetic interferences were observed in most of the contemporary ICDs during radiotherapy course, regardless of photon dose. To avoid potentially life-threatening ICD malfunctions such as pacing inhibition or inappropriate shock delivery, magnet application on the pocket site or ICD reprogramming to the asynchronous mode are still suggested in ICD patients ongoing even low energy radiotherapy exposure. Funding Acknowledgement Type of funding source: None


2011 ◽  
Vol 10 (9) ◽  
pp. 890-890 ◽  
Author(s):  
Natalie Artzi ◽  
Nuria Oliva ◽  
Cristina Puron ◽  
Sagi Shitreet ◽  
Shay Artzi ◽  
...  

2021 ◽  
Vol 900 ◽  
pp. 115674
Author(s):  
Muthaiah Annalakshmi ◽  
Sakthivel Kumaravel ◽  
T.S.T. Balamurugan ◽  
Shen-Ming Chen ◽  
Ju-Liang He

2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


Sign in / Sign up

Export Citation Format

Share Document