Heat exchanger network retrofit considering pressure drop and heat-transfer enhancement

AIChE Journal ◽  
1999 ◽  
Vol 45 (6) ◽  
pp. 1239-1254 ◽  
Author(s):  
X. R. Nie ◽  
X. X. Zhu
2017 ◽  
Vol 57 (2) ◽  
pp. 125 ◽  
Author(s):  
Putu Wijaya Sunu ◽  
I Made Rasta

This investigation was performed to experimentally investigate the enhancement of heat transfer and the friction of an annulus in a double pipe heat exchanger system with rectangular grooves in the turbulent flow regime. The shell is made of acrylic and its diameter is 28 mm. The tube is made of aluminium and its diameter is 20 mm. Grooves were incised in the annulus room with a circumferential pattern, with a groove space of 2 mm, a distance between the grooves of 8mm and a groove height of 0.3 mm. The experiments consist of temperature and pressure measurement and a flow visualization. Throughout the investigation, the cold fluid flowed in the annulus room. The Reynold number of cold fluid varied from about 31981 to 43601 in a counter flow condition. The volume flow rate of hot fluid remains constant with Reynold number about 30904. Result showed the effect of grooves, which are applied in the annulus room. The grooves induce the pressure drop, the pressure drop in the grooved annulus was greater by about 15.88% to 16.72% than the one in the smooth annulus. The total heat transfer enhancement is of 1.09–1.11. Moreover, the use of grooves in the annulus of the heat exchanger not only increase the heat transfer process, but also increase the pressure drop, which is related to the friction factor.


2020 ◽  
Vol 120 ◽  
pp. 109644 ◽  
Author(s):  
Jiří Jaromír Klemeš ◽  
Qiu-Wang Wang ◽  
Petar Sabev Varbanov ◽  
Min Zeng ◽  
Hon Huin Chin ◽  
...  

2021 ◽  
Vol 238 ◽  
pp. 114154
Author(s):  
Nianqi Li ◽  
Jinghan Wang ◽  
Jiří Jaromír Klemeš ◽  
Qiuwang Wang ◽  
Petar Sabev Varbanov ◽  
...  

2005 ◽  
Vol 2005.15 (0) ◽  
pp. 541-544
Author(s):  
Himsar AMBARITA ◽  
Kouki KISHINAMI ◽  
Kazuhiko SATO ◽  
Masasi DAIMARUYA ◽  
Hiromu SUGIYAMA ◽  
...  

2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
Mohd Fahmi Md Salleh ◽  
Mazlan Abdul Wahid ◽  
Seyed Alireza Ghazanfari

Heat transfer enhancement is believed can be achieved by using vortex generator. In the past decades, many researches have been performed to investigate the effect of various vortex generator geometry and parameters including vortex generator angle of attack and height. However, less study has been conducted to investigate the influence of vortex generator length at different arrangement towards the heat transfer performance across the fin-and-tube heat exchanger (FTHE). Therefore, the effects of different strategy on the rectangular winglet vortex generator (RWVG) base length towards the thermal hydraulic performance across the FTHE were numerically investigated in this study. Two types of RWVG arrangement known as common flow down (CFD) or common flow up (CFU) arrangement were used and placed behind four rows of tube in inline arrangement. Total of 7 cases were investigated including the default RWVG, extended front and extended back for both RWVG in CFD and CFU arrangement together with FTHE without vortex generator which was set as the baseline case. The Reynolds number ranged from 500 to 900. It was found that the size of the wake region behind the RWVG contributed to the additional pressure drop penalty across the FTHE. Meanwhile, different thermal characteristics were found for different base length strategy in CFD and CFU arrangement. For RWVG arranged in CFD and CFU arrangement, the extended back case shows the highest heat transfer enhancement with 5 – 25 % and 5 – 15 % increment compared to the baseline case respectively. Based on JF factor evaluation, default RWVG in CFU arrangement provide better heat transfer enhancement than the pressure drop penalty compared to other RWVG cases with average JF factor value is 0.8. Nonetheless, none of the tested cases shows higher JF factor value than the baseline case.  


Sign in / Sign up

Export Citation Format

Share Document