scholarly journals High‐Density RNA Microarrays Synthesized In Situ by Photolithography

2018 ◽  
Vol 57 (46) ◽  
pp. 15257-15261 ◽  
Author(s):  
Jory Lietard ◽  
Dominik Ameur ◽  
Masad J. Damha ◽  
Mark M. Somoza
Keyword(s):  
2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 313 ◽  
pp. 125376
Author(s):  
Ashutosh Singh Raghubanshi ◽  
Manish Mudgal ◽  
Anil Kumar ◽  
R.K. Chouhan ◽  
Avanish Kumar Srivastava
Keyword(s):  
Red Mud ◽  

1994 ◽  
Vol 141 (2) ◽  
pp. 251-258 ◽  
Author(s):  
B Velkeniers ◽  
M Kazemzadeh ◽  
L Vanhaelst ◽  
E L Hooghe-Peters

Abstract The effects of oestradiol on prolactin gene expression were studied by quantitative in situ hybridization histochemistry in different prolactin pituitary cell (sub)populations, which had been obtained by separation on a discontinuous Percoll gradient. When cells were incubated in vitro in the presence of oestradiol (10−8 m) for a period of 4, 24, 48 and 72 h, there was an increase in the amount of prolactin mRNA, from 24 h on, only in high-density prolactin cells and lactotrophs of the total cell suspension. In contrast, the amount of prolactin mRNA in lactotrophs of low density did not change upon treatment with oestradiol. Pharmacological treatment with 50 μg oestradiol/day (s.c.) of random cycling female rats in vivo for 14 days increased the total number of prolactin gene-expressing cells and more lactotrophs were recovered at high density after Percoll gradient centrifugation. These results suggest a preferential stimulatory effect of oestradiol on prolactin gene transcription on a subpopulation of lactotrophs. Changes observed in prolactin cell layers after oestradiol treatment in vivo may represent a preferential effect in situ on a particular mammotroph cell subpopulation. Journal of Endocrinology (1994) 141, 251–258


Polymer ◽  
2019 ◽  
Vol 180 ◽  
pp. 121698 ◽  
Author(s):  
Tao Liao ◽  
Xintong Zhao ◽  
Xiao Yang ◽  
Phil Coates ◽  
Ben Whiteside ◽  
...  

Author(s):  
Abdulmumin Adebisi ◽  
Tajudeen Mojisola ◽  
Umar Shehu ◽  
Muhammed Sani Adam ◽  
Yusuf Abdulaziz

In-situ synthesis of high-density polyethylene (HDPE) reinforced groundnut shell particulate (GSP) composite with treated GSP within the range of 10-30 wt% at 10 wt% has been achieved. The adopted technique used in the production of the composite is melt mixing and compounding using two roll mills with a compression moulding machine. Properties such as hardness, tensile strength, impact energy and water absorption analysis were examined. The result revealed that addition of GSP increases the hardness value from 22.3 to 87 Hv. However, the tensile strength progressively decreased as the GSP increases in the HDPE. This trend arises due to the interaction between neighbouring reinforced particulate which appears to influence the matrix flow, thereby inducing embrittlement of the polymer matrix. It was also observed that water absorption rate steadily increased with an increase in the exposure time and the absorbed amount of water increases by increasing the wt% of the GSP. Analysing the obtained results, it was concluded that there were improvements in the hardness, tensile strength, impact energy and water absorption properties of the HDPE-GSP polymer composite when compared to unreinforced HDPE. On these premises, GSP was found as a promising reinforcement which can positively influence the HDPE properties of modern composites.


2018 ◽  
Vol 16 ◽  
pp. 232-241 ◽  
Author(s):  
Antonio Cruz-Aguilar ◽  
Dámaso Navarro-Rodríguez ◽  
Odilia Pérez-Camacho ◽  
Salvador Fernández-Tavizón ◽  
Carlos Alberto Gallardo-Vega ◽  
...  

2011 ◽  
Vol 2011 (DPC) ◽  
pp. 001291-001315
Author(s):  
Gilbert Lecarpentier ◽  
Jean-Stephane Mottet ◽  
Keith Cooper ◽  
Michael Stead

3-Dimensional interconnection of high density integrated circuits enables building devices with greater functionality with higher performances in a smaller space. This paper explores the chip-to-chip and chip-to-wafer alignment and the associated bonding techniques such as in-situ reflow or thermocompression with a local oxide reduction which contributes to higher yield together with reduction of the force or temperature requirements.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dennis Dienst ◽  
Julian Wichmann ◽  
Oliver Mantovani ◽  
João S. Rodrigues ◽  
Pia Lindberg

AbstractCyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document