Effects of glycerol and PE-g-MA on morphology, thermal and tensile properties of LDPE and rice starch blends

2004 ◽  
Vol 92 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Y.-J. Wang ◽  
W. Liu ◽  
Z. Sun
2011 ◽  
Vol 84 (1) ◽  
pp. 373-382 ◽  
Author(s):  
Cristina M. Rosell ◽  
W. Yokoyama ◽  
C. Shoemaker

Author(s):  
Urška Vrabič Brodnjak ◽  
◽  
Dimitrina Todorova ◽  

Bio based materials fall under the broad category of bio-products or bio-based products, which includes materials, chemicals and energy derived from renewable biological resources. This research shows the preparation of both, paper sheets with blend fillers of chitosan and rice starch and chitosan and rice starch films, which could be used as packaging material for a variety of applications. In this research, we used a blend mixture, different concentrations of chitosan and rice starch both in paper production and in films to investigate the optical properties of the obtained materials with a combination of ultrasonic treatment during the film formation. The research showed that the optical properties of the obtained packaging materials improved. It also showed that blend fillers of chitosan and rice starch are effective paper fillers in the preparation of cellulose mixture for bio based packaging materials and the optical properties are with slight changes. The investigation on the optical properties of the obtained paper samples during accelerated thermal showed that the ageing of paper with addition of chitosan and chitosan and rice starch blends had the same behaviour through the 72 hours of ageing. The ultrasonic treatment of the films improved transparency. The surface at untreated blend film was more uneven compared to chitosan and rice starch films, which improved after the treatment.


2021 ◽  
Vol 904 ◽  
pp. 221-225
Author(s):  
Thapanee Wongpreedee ◽  
Nanthaya Kengkhetkit

Thermoplastic starches and a nonwoven pineapple leaf sheet (NPALF) were prepared. Two types of flours were used to prepare thermoplastic starches (TPSs) which were Rice flour thermoplastic starch (RTPS) and Glutinous rice flour thermoplastic starch (GTPS). Two layers of thermoplastic starches and NPALF layer were sandwiched and pressed by a hot pressing machine at 150°C with 1500 psi for 15 min. All composites were investigated their densities and tensile properties. The density of all composite types had a lower density than each neat TPSs and types of rice flours did not affect their densities. The tensile property results confirmed NPALF could be used as a reinforcing agent both in GTPS and RTPS composites but their tensile improvement effectiveness in both systems are different. NPALF composite with RTPS did not affect the tensile strength but provided a slight improvement in modulus. Remarkably, NPALF composite using GTPS explored the great improvement performance both in strength and modulus which were increased up to 174% and 308% comparing with neat GTPS. SEM micrograph evidence clearly showed good wetting between GTPS and the reinforcement layer in the composite. This is resulting in the NPALF-GTPS composite showed a strong improvement in tensile properties.


2003 ◽  
Vol 55 (5) ◽  
pp. 203-212 ◽  
Author(s):  
Jih-jou Chen ◽  
Vivian M.-F. Lai ◽  
Cheng-yi Lii

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Edwin Azwar ◽  
Minna Hakkarainen

Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences in tensile properties were designed. Addition of halloysite nanoclay resulted in materials with improved tensile strength at break and rather low strain at break. The effect of kaolin on tensile strength was highly dependent on the used plasticizer. However, in most combinations the addition of kaolin resulted in materials with intermediate tensile strength and strain at break values. The addition of milled wood flour and rice bran improved the tensile strength, while the addition of liquefied fillers especially liquefied rice bran increased the strain at break indicating that liquefied rice bran could have potential as a plasticizer for starch blends.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi ◽  
Isaac O. Igwe ◽  
Innocent C. Madufor

Polypropylene (PP)/plasticized cassava starch (PCS) blended with and without compatibilizer (polypropylene-graft-maleic anhydride (PP-g-MA)) via melt blending were prepared for soil burial which lasted for 90 days. Plasticized starch loadings of 0, 10, 20, 30, 40, and 50 wt.% were used, while pp-g-ma was used at 10 wt.% based on starch weight. The PP/PCS and PP/PCS/PP-G-MA blends were evaluated for their tensile properties. It was observed that the tensile strength, elongation at break, and young’s modulus decreased with increases in soil burial time as well as starch content for PP/PCS blends. Similar treads for the tensile properties were observed for PP/PCS/PP-g-MA, but with higher properties as compared to uncompatibilized blends. However, the tensile properties for both PP/PCS and PP/PCS/PP-g-Ma decrease with increases in starch loading and also as the burial period progressed.


2004 ◽  
Vol 81 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Jih-Jou Chen ◽  
Vivian M.-F. Lai ◽  
Cheng-yi Lii

Sign in / Sign up

Export Citation Format

Share Document