Oxygen-barrier properties of poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable films

2012 ◽  
Vol 125 (S2) ◽  
pp. E20-E26 ◽  
Author(s):  
S. M. Razavi ◽  
Susan Dadbin ◽  
Masoud Frounchi
Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1113 ◽  
Author(s):  
Shouyun Cheng ◽  
Burhan Khan ◽  
Fahad Khan ◽  
Muhammad Rabnawaz

The preparation of renewable polyesters with good barrier properties is highly desirable for the packaging industry. Herein we report the synthesis of high molecular weight polyesters via an innovative use of an in situ drying agent approach and the barrier properties of the films formed from these polyesters. High number average molecular weight (Mn) semiaromatic polyesters (PEs) were synthesized via alternating ring-opening copolymerization (ROCOP) of phthalic anhydride (PA) and cyclohexene oxide (CHO) using a salen chromium(III) complex in the presence of 4-(dimethylamino)pyridine (DMAP) cocatalyst. The use of a calcium hydride (drying agent) was found to enhance the number Mn of the synthesized PEs, which reached up to 31.2 ku. To test the barrier properties, PE films were prepared by solvent casting approach and their barrier properties were tested in comparison poly(lactic acid) films. The PE films showed significantly improved water vapor and oxygen barrier properties compared to the commercial poly(lactic acid) (PLA) film that suggests the potential use of these PEs in in the food packaging industry.


2020 ◽  
Vol 137 (44) ◽  
pp. 49361 ◽  
Author(s):  
Samuel Dorey ◽  
Fanny Gaston ◽  
Nina Girard‐Perier ◽  
Nathalie Dupuy ◽  
Sylvain R.A. Marque ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Sign in / Sign up

Export Citation Format

Share Document