scholarly journals Time-series analysis of long-term photometry of BM Canum Venaticorum

2017 ◽  
Vol 338 (4) ◽  
pp. 453-463
Author(s):  
L. Siltala ◽  
L. Jetsu ◽  
T. Hackman ◽  
G. W. Henry ◽  
L. Immonen ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


2014 ◽  
Vol 52 (5) ◽  
pp. 2960-2976 ◽  
Author(s):  
Wonkook Kim ◽  
Tao He ◽  
Dongdong Wang ◽  
Changyong Cao ◽  
Shunlin Liang

Gut ◽  
2020 ◽  
pp. gutjnl-2020-320666
Author(s):  
Qiang Feng ◽  
Xiang Lan ◽  
Xiaoli Ji ◽  
Meihui Li ◽  
Shili Liu ◽  
...  

2004 ◽  
Vol 380 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Christian Temme ◽  
Ralf Ebinghaus ◽  
J�rgen W. Einax ◽  
Alexandra Steffen ◽  
William H. Schroeder

2010 ◽  
Vol 77A (10) ◽  
pp. 925-932 ◽  
Author(s):  
M. Rowan Brown ◽  
Huw D. Summers ◽  
Paul. Rees ◽  
Sally C. Chappell ◽  
Oscar F. Silvestre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document