ChemInform Abstract: Modulating Self-Assembly of Amyloidogenic Proteins as a Therapeutic Approach for Neurodegenerative Diseases: Strategies and Mechanisms

ChemInform ◽  
2012 ◽  
Vol 43 (19) ◽  
pp. no-no
Author(s):  
Tingyu Liu ◽  
Gal Bitan
Author(s):  
Macarena Lorena Herrera ◽  
Eugenia Falomir-Lockhart ◽  
Franco Juan Cruz Dolcetti ◽  
Nathalie Arnal ◽  
María José Bellini ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 925 ◽  
Author(s):  
Kristina Endres

The term “amyloid” refers to proteinaceous deposits of peptides that might be generated from larger precursor proteins e.g., by proteolysis. Common to these peptides is a stable cross-β dominated secondary structure which allows self-assembly, leading to insoluble oligomers and lastly to fibrils. These highly ordered protein aggregates have been, for a long time, mainly associated with human neurodegenerative diseases such as Alzheimer’s disease (Amyloid-β peptides). However, they also exert physiological functions such as in release of deposited hormones in human beings. In the light of the rediscovery of our microbial commensals as important companions in health and disease, the fact that microbes also possess amyloidogenic peptides is intriguing. Transmission of amyloids by iatrogenic means or by consumption of contaminated meat from diseased animals is a well-known fact. What if also our microbial commensals might drive human amyloidosis or suffer from our aggregated amyloids? Moreover, as the microbial amyloids are evolutionarily older, we might learn from these organisms how to cope with the sword of Damocles forged of endogenous, potentially toxic peptides. This review summarizes knowledge about the interplay between human amyloids involved in neurodegenerative diseases and microbial amyloids.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2663
Author(s):  
Rodrigo Pinheiro Araldi ◽  
Fernanda D’Amelio ◽  
Hugo Vigerelli ◽  
Thatiana Correa de Melo ◽  
Irina Kerkis

The aging population has contributed to the rapid rise in the global incidence of neurodegenerative diseases. Despite the medical advances, there are no effective treatments for these disorders. Therefore, there is an urgent need for new treatments for these diseases. In this sense, cell therapy has been recognized as the best candidate for treating incurable diseases, such as neurodegenerative disorders. However, the therapeutic use of these cells can be limited by several factors. Thus, there has been a rediscovery that extracellular vesicles, including exosomes, can be alternatively explored in the treatment of these diseases, overcoming the limits of cell-based therapy. In this sense, this review aims to revisit all areas from biology, including biogenesis and the content of exosomes, to biotechnology, proposing the minimal information required to isolate, characterize, and study the content of these vesicles for scientific and/or clinical purposes.


Author(s):  
Jacques Fantini ◽  
Nouara Yahi

Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as ‘amyloidogenic proteins’, with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in β-sheet structures (annular pores, amyloid fibrils) or in α-helix structures (transmembrane channels). Condensed membrane nano- or microdomains formed by sphingolipids and cholesterol are privileged sites for the binding and oligomerisation of amyloidogenic proteins. By controlling the balance between unstructured monomers and α or β conformers (the chaperone effect), sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic proteins. Cholesterol has a dual role: regulation of protein–sphingolipid interactions through a fine tuning of sphingolipid conformation (indirect effect), and facilitation of pore (or channel) formation through direct binding to amyloidogenic proteins. Deciphering this complex network of molecular interactions in the context of age- and disease-related evolution of brain lipid expression will help understanding of how amyloidogenic proteins induce neural toxicity and will stimulate the development of innovative therapies for neurodegenerative diseases.


2018 ◽  
Vol 19 (8) ◽  
pp. 2449 ◽  
Author(s):  
Yutaka Sadakane ◽  
Masahiro Kawahara

Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1441 ◽  
Author(s):  
Masahiro Kawahara ◽  
Midori Kato-Negishi ◽  
Ken-ichiro Tanaka

Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document